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Abstract

Recently, the field of generative models has advanced
significantly with the introduction of Diffusion Probabilis-
tic Models (DPMs). However, the discovery of Lipschitz
Singularities within DPMs reveals a vulnerability to sub-
tle adversarial attacks, particularly at timesteps close to
zero. This paper introduces a novel approach to enhance
the robustness of DPMs against adversarial attacks, specif-
ically addressing the challenge posed by Lipschitz Singular-
ities. By implementing a dynamic scheduling strategy of σ
through Reinforcement Learning (RL), we mitigate the ad-
verse effects stemming from adversarial attacks that exploit
vulnerabilities linked to Lipschitz singularities. Experimen-
tal results demonstrate the effectiveness of our approach in
maintaining high-quality image generation.

1. Introduction

Diffusion Probabilistic Models (DPMs) [17], [24], [29],
serving as a foundational architecture [5], [13] for various
generative models, have gained significant popularity in the
computer vision community due to their ability to circum-
vent the complex optimization issues associated with adver-
sarial training in Generative Adversarial Networks (GANs)
[6], [16], for generative tasks. DPMs utilize a two-step
approach [17] described in Figure 1: the diffusion pro-
cess, which gradually transforms original data into a Stan-
dard normal distribution by adding noise, and the denoising
process, which systematically removes noise to restore the
original data distribution by predicting the added noise in
the diffusion process.

As representative DPMs, there are the Denoising Diffu-
sion Probabilistic Model (DDPM) and the Denoising Diffu-
sion Implicit Model(DDIM). DDPM conducts a denoising
process with whole timesteps to maintain the Markov prop-
erty [17], which requires extensive GPU resources. Com-

Figure 1. This figure shows the diffusion process and the denoising
process where xt (t = T, T − 1, ... 2, 1) is defined as the vector
whose elements in each dimension correspond to the pixel value
in the image at timestep t, and the ϵθ(xt, t) is the parameterized
network predicting the added noise in diffusion process.

pared to DDPM, DDIM [29] discards the Markov property
and selectively performs the denoising process at specific
timesteps. While DDPM and DDIM have other distinctions,
they share even more significant traits.

In contrast to DDPM, DDIM requires the scheduling of
the sigma (σ) hyperparameter as described in Figure 2 and
Equation 13, which plays a crucial role as much as predict-
ing added noise in the denoising process of the diffusion
model [29]. By carefully scheduling the σ at each timestep,
the model can navigate the complex trade-off between re-
moving noise and retaining essential features of the data
distribution, resulting in high-quality sample generation.

Beyond conventional strategies that implement a uni-
form σ scheduling for all instances during the denoising
process as described in Figure 2, employing a customized
σ scheduling for each instance can be more effective [31].
The assumption that all instances should have an identi-
cal schedule is flawed because it overlooks the possibility
that an optimal sequence of σ values might exist for each
unique instance. However, until now, the σ scheduling has
been conducted without considering the individualized σ
scheduling [21], [4]. Universally, applying a σ value of zero



Figure 2. This figure shows that the identical σ scheduling is ap-
plied across the different instance during denoising process where
the xa

t and xb
t (t = T, T − 1, ... , 2, 1) are defined as the vector

whose elements in each dimension correspond to the pixel value
in the image at timestep t, and the σt is the σ applied at timestep t
for denoising process.

uniformly in the denoising process for every instance is ac-
knowledged as an effective strategy. [29], [31].

Both DDPM and DDIM, recognized as central architec-
tures for generative foundation models, have recently been
spotlighted for harboring Lipschitz Singularities [34],
which can make the foundation models built on diffusion
models vulnerable to even subtle adversarial attacks [2].
During denoising processes, diffusion models transform a
noised image (xt) and a timestep (t) into a denoised im-
age (xt−1) by predicting the noise (ϵθ(xt, t)) as described
in Figure 1 and the Equation 13 [29]. However, concern-
ing Equation 1 in the [34], the existence of Lipschitz Sin-
gularities makes prediction of noise (ϵθ(xt, t)) unstable if
even slight changes are made on input t especially when
timesteps of denoising process, described in Figure 1, ap-
proach to zero. Thus, subtle adversarial attacks on timesteps
near zero not only make each denoising step, outlined in
Equation 13, defective but also deteriorate the subsequent
denoising steps across the denoising process, consequently
generating degraded x0; refer to Figure 6.

lim sup
t→0+

∣∣∣∣∂ϵθ(x, t)∂t

∣∣∣∣→ ∞ (1)

Empirical experiments have discovered cases where the
qualities of x0 deteriorate when adversarial attacks are con-
ducted at timesteps near zero (noise, denoted as ϵ and sam-
pled from the normal distribution, plays a role in adversarial
attacks). Due to the property of the diffusion model, the x0

can be predicted at a certain timestep t(1 ≤ t ≤ T ), with
the predicted x0 denoted as x̂0; refer to Equation 10, [22].
The qualities of x̂0 tend to increase or remain constant as
the denoising process progresses if there are no adversarial
attacks on the timesteps near zero. In contrast, the quali-
ties of x̂0 suddenly decrease if even slight adversarial at-

Figure 3. This figure shows that the finally denoised image x0 is
predicted by the denoised images at certain timestep (1 ≤ t ≤ T )
and qualities of predicted images are decreasing at timesteps near
zero when the noise is injected into the timesteps which are inputs
of network predicting noise. The x̂0 is the predicted images on the
finally denoised image, Qt is the quality of the predicted image
and ϵ is the injected noise sampled from the normal distribution.

tacks are conducted on timesteps near zero; refer to Figure
3. In addition, the quality of the x0 usually becomes sim-
ilar to degraded qualities of x̂0 which are predicted by xt

at timestep t near zero. Considering the adversarial attacks
at timesteps near zero, Equation 1 and denoising steps de-
tailed in Equation 13, it can be inferred that the diminished
quality of the generated images is attributable to the defect
of denoising steps which is caused by adversarial attacks on
timesteps near zero.

To develop the method for making the diffusion model
robust against adversarial attacks at timesteps near zero, this
paper introduces a strategy that alleviates the impact of un-
stable noise prediction, occurring because of the adversar-
ial attacks on timesteps near zero during the denoising step
detailed in Equation 13. It does so by implementing cus-
tomized σ scheduling across each instance (xt), in contrast
to Figure 2, during denoising steps outlined in Equation 13.
Scheduling σ at timesteps near zero can be effective since
σ can play a role of coefficient for unstable noise predic-
tion (ϵθ(xt, t)) inside Equation 13 while stabilizing unstable
noise prediction caused by adversarial attacks. To learn the
optimal policy deciding the appropriate σ, Reinforcement
Learning (RL) [3] is employed.

Therefore, the goal of this paper is to demonstrate that
under adversarial attacks on timesteps near zero, which are
associated with Lipschitz Singularities, the σ scheduled by
policy can generate the better quality of x0 than universally
utilized σ scheduling approach which maintains a constant
σ value of zero throughout the denoising process [29]. As



shown in our experiments, the suggested approach, selec-
tively modulating σ on each instance during denoising steps
at timesteps vulnerable to adversarial attacks, can make dif-
fusion models more robust than pre-fixed σ scheduling un-
der adversarial attacks.

Contributions: For the first time, this paper addresses
the adversarial attacks, considering the Lipschitz Singular-
ities that can be summarized by the Equation 1. Further-
more, this paper introduces an RL-based σ scheduling strat-
egy to enhance the robustness of diffusion models against
adversarial attacks.

Rest of papers: In the related work section, the intro-
ductions of Lipschitz Singularities and the Markov Deci-
sion Process (MDP) which should be defined to apply the
RL algorithm are presented. In the background section, the
concepts for diffusion models are presented. In the MDP
formulation section, State, Action and Reward, divided into
Final Reward and Intermediate Reward, are defined. In the
experiment section, it is shown by experiments that the sug-
gested approach is effective for making the diffusion model
more robust than universally utilized fixed σ scheduling un-
der the adversarial attacks on timesteps near zero.

2. Related Work

2.1. Image Quality Evaluator: Q-ALIGN

The Q-ALIGN model introduces a novel approach to visual
scoring by training Large Multi-modality Models (LMMs)
to evaluate image quality, aesthetics, and video quality
based on discrete, text-defined levels rather than numeri-
cal scores. This method emulates how human raters as-
sess visual content by using categories such as ”excellent,”
”good,” ”fair,” ”poor,” and ”bad” to train the LMMs. The
model achieves state-of-the-art performance across vari-
ous datasets for image quality assessment (IQA), image
aesthetic assessment (IAA), and video quality assessment
(VQA) tasks. It demonstrates not only superior accuracy
and generalization capabilities but also efficiency in training
and flexibility in combining datasets from different visual
assessment tasks into a unified model, the ONEALIGN.

2.2. Lipschitz Singularities in Diffusion Models

Diffusion models, pivotal in generative modeling by ma-
nipulating noise through stochastic processes, face a chal-
lenge due to ”Lipschitz singularities” near the diffusion on-
set, where minor changes can cause major output variations,
undermining model stability and reliability. These singu-
larities complicate model training and inference, affecting
image generation quality and diversity. Addressing Lips-
chitz singularities is crucial for enhancing diffusion models’
robustness and ensuring stable, high-quality image produc-
tion.

Figure 4. This figure shows the relationship among State, Action,
Reward, Agent, Policy and Environment.

2.3. MDP, State, Action, Reward, Agent and RL

Utilizing the RL algorithm requires formulating the MDP
[14] consisting of State, Action, and Reward [27], [32],
[15], [28], [30], [18], [11]. In a Markov Decision Process
(MDP), a state represents the specific conditions or status at
a given time. An action refers to a choice made by the policy
network of agent [1], [3] that can alter the current state. The
reward is a feedback mechanism that quantifies the imme-
diate benefit of performing a particular action from a given
state, guiding the agent toward achieving its goal through
a series of decisions. As described in Figure 4, these ele-
ments form the foundation of decision-making models with
environments where outcomes are partly random and partly
under the control of the agent. Especially, the action in this
paper is defined as adjusting σ utilized for the denoising
process; refer to Equation 13.

The agent receives the reward and transitioned state by
interacting with the environment. The reward [10], [20],
[9], [19], is the quantitative assessment on the effectiveness
of action. The new state, caused by the interaction between
the agent and environment, is presented to the agent for de-
ciding the next action.

In the formed environment, the agent’s objective is to
explore different actions and exploit [12], [7], [25] the op-
timal action maximizing the accumulated reward. To opti-
mize the policy network of the agent, the RL algorithm is
utilized with the rewards collected from the interaction with
the environment.

3. BACKGROUND
In this section, the fundamental concepts of diffusion mod-
els are briefly introduced. DDPM offers a latent variable
model that has the following form [31]

pθ(x0) =

∫
pθ(x0:T ) dx1:T (2)



where pθ(x0:T ) := pθ(xT )
∏T

t=1 p
(t)
θ (xt−1|xt) and

x1, x2, . . . , xT are latent variables that have the same di-
mension with original data x0. The parameters θ are
trained to make the model approximate distribution q(x0).
The training is performed to maximize a variational lower
bound,

max
θ

Eq(x0)[log pθ(x0)] ≤ max
θ

Eq(x0,x1,...,xT )[log pθ(x0:T )

− log q(x1:T |x0)] (3)

The term q(x1:T |x0) is defined as the diffusion process
given by the original data x0. In the paper [17], the diffusion
process is defined as,

q(x1:T |x0) :=
T∏

t=1

q(xt|xt−1), (4)

where

q(xt|xt−1) := N
(√

αt

αt−1
xt−1,

(
1− αt

αt−1

)
I

)
(5)

The term pθ(x0:T ) in the Equation 2, a Markov chain
from xT to x0, is the denoising process as it approximately
matches the reverse process of the Equation 4. From the
Equation 4 and Equation 5, there is a special property,

q(xt|x0) := N (xt;
√
αtx0, (1− αt)I). (6)

If all the conditions are considered as Gaussian with
trainable parameters, the Equation 3 can be re-written as,

Lγ(ϵθ) :=
T∑

t=1

γtEx0∼q(x0),ϵt∼N (0,I)

[∥∥∥ϵθ(√αtx0

+
√
1− αtϵt, t

)
− ϵt

∥∥∥]. (7)

DDIM observes that the training objective of DDPM in
the Equation 6 only depends on q(xt|x0), but not directly
on the joint q(x1:T |x0). DDIM generalizes the DDPM as
a Non-Markovian process by conditioning the xt−1 both xt

and x0 instead of only x0 as in the Equation 5. Its diffusion
process can be modeled as

qσ(x1:T |x0) = qσ(xT |x0)
T∏

t=2

qσ(xt−1|xt, x0), (8)

where qσ(xt−1|xt, x0) is chosen to satisfy qσ(xT |x0) =
N (

√
αTx0, (1− αT )I). Therefore, we have,

qσ(xt−1|xt, x0) =N

(
√
αt−1x0+

√
1− αt−1 − σ2

t

(
xt −

√
αtx0√

1− αt

)
, σ2

t I

)
(9)

From the Equation 6, xt can be obtained by sampling
x0 ∼ q(x0) and ϵt ∼ N (0, I). By training the model
ϵθ(xt, t) to predict ϵt at each time step, x0 predicting func-
tion f

(t)
θ at timestep t is defined as,

f
(t)
θ (xt) =

xt −
√
1− αtϵθ(xt, t)√

αt
. (10)

The denoising process with prior pθ(xT ) = N (0, I) is
defined as,

p
(t)
θ (xt−1|xt) =

{
N (f

(1)
θ (x1), σ

2
1I) if t = 1

qσ(xt−1|xt, f
(t)
θ (xt)) otherwise,

(11)
The parameter θ is optimized as the Equation 12 with

qσ(x1:T |x0) is defined in Equation 8.

Jσ(ϵθ) =Ex0:T∼qσ(x0:T )

[
log qσ(xT |x0)

+

T∑
t=2

log qσ(xt−1|xt, x0)

−
T∑

t=1

log p
(t)
θ (xt−1|xt)− log pθ(xT )

]
(12)

Based on the defined denoising process, given a sample
xt, we could sample the xt−1 as

xt−1 =
√
αt−1

(
xt −

√
1− αtϵθ(xt, t)

)
αt

+
√

1− αt−1 − σ2
t · ϵθ(xt, t) + σtϵt,

(13)

where σt is usually configured as 0 because it is confirmed
to be effective [29].

4. MDP formulation
As mentioned in the introduction, this paper suggests a
strategy utilizing the RL algorithm, which firstly requires
formulating MDP. In this section, The MDP is defined by
the tuple (S,A,R, P, γ), where S, A, R, P and γ represent
the set of states, the actions available, the reward function,
the state transition and the discount rate, respectively.

Prior to presenting the MDP formulation, the notation tc
is introduced, important across the following descriptions.
Referring to Figure 5, the critical timestep, tc, marks the
point where the agent begins to engage in scheduling the σ,
utilized for certain denoising step described in the Equation
13. Considering that instability in noise prediction arises
from adversarial attacks at timesteps near zero, scheduling
σ exclusively by the agent at these timesteps is sufficient.
Thus, the state, action and reward are also defined only for
timesteps t = tc, tc−1, . . . , 2, 1; refer to Figure 5.



Figure 5. At timesteps in blue box (t > tc), pre-defined schedule
of σ is applied for denoising process. In contrast, in yellow box
(t = tc, tc − 1, ..., 2, 1), the agent schedules the σ.

4.1. State

The state, denoted by st, is defined as the tuple consisting of
the denoised image (xt) and the timestep (t) for timesteps
t = tc, tc−1, . . . , 2, 1; refer to the Equation 14. This defi-
nition of the state can distinguish whether the noise predic-
tion, ϵθ(xt, t), is stable or not. Because the noise prediction
is only dependent on the xt, t, whether the noise prediction
is stable or not can be also distinguished by xt, t. With this
state definition, the agent is capable of identifying effective
actions for a given state.

st = (xt, t) (14)

4.2. Action

The action, denoted as at, is to decide the σ, denoted as
σAg
t and utilized in the each denoising steps specified in

Equation 13 for timesteps t = tc, tc−1, . . . , 2, 1; refer to
Equation 15. According to Equation 13, σ also can act as a
coefficient of noise prediction (ϵθ(xt, t)) at timesteps near
zero. By selectively adjusting the σAg

t across each instance
during the denoising process, it can effectively stabilize the
unstable noise prediction.

at = σAg
t (15)

4.3. Transition

The transition function P is defined as taking an input
at given the current state st, and outputs the next state
as the tuple of (p

(t)
θ (xt−1|xt), t − 1) for timesteps t =

tc, tc−1, . . . , 2; refer to the Equation 11. In the denoising
process, as detailed by Equation 13, Since xt−1 is derived
by p

(t)
θ (xt−1|xt), the next state can be also driven as the

tuple of (xt−1, t − 1). Even though the next state is con-
ventionally denoted as st+1, with regard to the denoising
process where the timestep t decreases as the process pro-
ceeds, the next state is denoted as st−1. To sum up, the
transition function taking an input at given the current state

st and outputs the next state st−1 is defined as the Equation
16.

st−1 = P (at|st) = (p
(t)
θ (xt−1|xt), t− 1) (16)

4.4. Reward

To define the reward that can reflect the goal presented in
the introduction, components such as image quality evalu-
ator [33] and baseline σ are required. As described in Fig-
ure 6, the image quality evaluator is the pre-trained deep
learning model that scores the input image’s quality where
Eθfreeze

is denoted as the deep learning-based parameter-
ized evaluator function and the Q is the quality estimated
by the evaluator function. During inference time, the pa-
rameters of the model are frozen.

The baseline σ, denoted as σBa
t , refers to the predefined

sigma used for the denoising step as outlined in Equation
13 for t = T, T − d, T − 2d, . . . , tc + d, tc, tc − 1, tc −
2 . . . , 2, 1 where the fixed interval for denoising process is
denoted as d. The universally utilized scheduling such as
maintaining σ as zero is applied to σBa

t . In contrast, The
agent-determined sigma, σAg

t , is selected by the agent based
on the state st for timesteps t = tc, tc−1, . . . , 2, 1.

In the following sections, the two types of reward, Final
Reward denoted as r1 and Intermediate Reward denoted as
rt (t > 1), are defined respectively by utilizing the compo-
nents introduced above. By defining the reward rt as sub-
traction QBa

t from QtAg where the QAg
1 , QAg

t , QBa
1 and

QBa
t are denoted as qualities of xa

0 , x̂a
0 , xb

0 and x̂b
0 which

are described in Figure 6, we can quantitatively assess how
much better the quality of x0 is preserved under adversar-
ial attacks on timesteps near zero when σ is scheduled with
σAg
t (agent-determined scheduling) compared to σBa

t (fixed
scheduling), for timesteps t = tc, tc − 1, ..., 3, 2, 1.

4.4.1 Final Reward

We calculate Final Reward r1 on a1 by the difference in
the estimated qualities of the fully denoised images (xa

0

and xb
0); refer to Figure 6 for the following. This qual-

ity comparison is conducted between the quality of the
image (xa

0) which is denoised with the σAg
t for timesteps

t = tc, tc − 1, ..., 2, 1 and σBa
t for timesteps t = T, T −

d, ...tc + 2d, tc + d (green arrow), against the quality
of xb

0 which is denoised with the σBa
t for timesteps t =

T, T − d, ..., tc + d, tc, tc − 1, tc − 2, ...2, 1 (blue arrow),
given the identical xb

T sampled by the Standard normal dis-
tribution. The r1 is mathematically expressed by the Equa-
tion 16, 17 and 18.

QAg
1 = Eθfreeze

(xa
0 |σ

Ag
1 , . . . , σAg

tc−2,

σAg
tc−1, σ

Ag
tc , σBa

tc+d, . . . , σ
Ba
T−d, σ

Ba
T , xb

T ) (16)



Figure 6. This figure shows how the qualities of xa
0 , x̂a

0 , xb
0 and x̂b

0 are derived as the denoising process progress. xa
0 and xb

0 are images
produced after full denoising steps, but scheduled by different σ scheduling.

QBa
1 = Eθfreeze

(xb
0|σBa

1 , . . . , σBa
tc−2,

σBa
tc−1, σ

Ba
tc , σBa

tc+d, . . . , σ
Ba
T−d, σ

Ba
T , xb

T ) (17)

r1 = QAg
1 −QBa

1 (18)

4.4.2 Intermediate Reward

However, it is hard to quantitatively assess how much better
σAg
t (t > 1) preserves the quality of x0 than σBa

t (t > 1)
because the relationship between σ at timestep t(t > 1) and
the quality of x0 is complex. As the alternative, we utilize
the x̂0 instead of x0 where x̂0 is the prediction of x0 from
Equation 10 using xt−1 (obtained after applying at in the
denoising step described by Equation 13; refer to Figure
6). Due to the property of the diffusion process detailed in
Equation 10, x̂0 can be derived by utilizing the xt whose t is
a certain timestep. By evaluating the quality of x̂0 predicted
by utilizing the xt−1 and t, it is possible to quantitatively
assess how much better σAg

t (t > 1) preserves the quality of
x0 than σBa

t (t > 1).
Similarly, we calculate Intermediate Reward rt on at,

for t = tc, tc − 1, ..., 3, 2, by the difference in the esti-
mated qualities of the images (x̂a

0 and x̂b
0) predicted from

xa
t−1 and xb

t−1, respectively; refer to Figure 6 for follow-
ings. This quality comparison is conducted between the
quality of image (x̂a

0) predicted from xa
t−1 which is de-

noised with the σAg
t for timesteps t = tc, tc − 1, ..., t+ 1, t

and σBa
t for timesteps t = T, T − d, ...tc + 2d, tc + d

(green dotted arrow), against the quality of x̂b
0 predicted

from the xb
t−1 which is denoised with the σBa

t for timesteps
t = T, T−d, ..., tc+d, tc, tc−1, tc−2, ...t+1, t (blue dot-
ted arrow), given the identical xT sampled by the Standard
normal distribution. The rt is mathematically expressed by
the Equation 19, 20 and 21.

QAg
t = Eθfreeze

(x̂a
0 |xa

t−1, σ
Ag
t , . . . , σAg

tc−2,

σAg
tc−1, σ

Ag
tc , σBa

tc+d, . . . , σ
Ba
T−d, σ

Ba
T , xb

T ) (19)

QBa
t = Eθfreeze

(x̂b
0|xb

t−1, σ
Ba
t , . . . , σBa

tc−2,

σBa
tc−1, σ

Ba
tc , σBa

tc+d, . . . , σ
Ba
T−d, σ

Ba
T , xb

T ) (20)

rt = QAg
t −QBa

t (21)



Figure 7. Left figure and Right figure correspond to the experiment result of CelebA and ImageNet, respectively. On the y-axis, the r1
described in 4.4.1 is utilized. As the tc where the agent starts to schedule σ(σAg

t ) increases, the r1 tends to increase.

5. Experiment
The objective of the experiments is to demonstrate that in
the face of adversarial attacks on timesteps near zero dur-
ing the denoising process of diffusion models—a situation
where noise prediction, vital for the denoising process, ex-
periences instability, lead to negative impact on the subse-
quent denoising steps and ultimately result in the generation
of lower-quality samples x0—optimizing the scheduling of
σ through an RL algorithm can consequently enhance the
quality of the generated image x0.

5.1. Experiment Setup

5.1.1 Software and Hardware

All experiments were conducted using Pytorch. All the ex-
periments were conducted using a GPU server equipped
with two NVIDIA RTX 3090 GPUs, 128 GB RAM, and
an Intel i9-10940X CPU.

5.1.2 Dataset and Generative Model

The Generative models presented in [29], DDIM, is trained
by 64x64 resolution CelebA [23] and 64x64 resolution Im-
ageNet [8] dataset. CelebA dataset provides a diverse col-
lection of celebrity face images while ImageNet provides a
diverse set of images across a wide array of categories. This
diversity challenges generative models to capture a broader
spectrum of features and patterns. Therefore, this diversity
helps in assessing the model’s capability to generate and re-
construct complex features, making it a benchmark dataset
in the field of computer vision for generative tasks. The
generative model is trained using a linear scheduler, with
the total number of timesteps (T ) set to 1000 [29]. After
training is once finished, all parameters of the generative
models are frozen.

5.1.3 Training Setup for Policy Network

Adversarial attacks are executed at timesteps t(t ≤ tc) dur-
ing the generation of x0 by generative models. For im-

plementing these attacks, noise from the standard normal
distribution, scaled down by a factor of 0.01 and clipped
within absolute value 0.05, is injected into the timesteps.
The σBa

t for timesteps t = tc, tc−1, . . . , 2, 1 are kept at
zero(universally utilized σ scheduling). This scheduling of
σ has been deemed effective in prior work [29] and is a
common practice in research related to DDIM [31].

The setup for data collection, utilized for training the
policy network and derived from interactions between the
agent and the environment, is as follows. In response to ad-
versarial attacks, the policy network produces the action at
(σAg

t ) which is utilized in denoising steps while σBa
t simply

maintains the σ value as zero. To assess the rewards rt for
actions at (σAg

t ) at timesteps t = tc, tc− 1, . . . , 2, 1, an im-
age quality evaluator is necessary. We employ a pre-trained
image quality evaluator suggested by [33], which assigns a
continuous quality score to images ranging from 1 to 5.

The agent network employs a Multi-Layer Perceptron
(MLP) architecture and the Proximal Policy Optimization
(PPO) algorithm is employed, with an epsilon value of 0.2,
as outlined in [35]. The γ is configured as 0.995.

5.1.4 Evaluation Setup for Policy Network

After training the policy network π, the agent is once fin-
ished, the parameters of the policy network is frozen for
evaluation of policy. Under the adversarial attacks, sam-
pling of images is conducted with σ scheduling from the
learned policy against the fixed scheduling. Across each ex-
periment, 500 samples are employed for statistics analysis
described in Figure 7.

5.2. Result

5.2.1 Description

The r1 quantifies how much better the quality of the gener-
ated image, x0, is preserved from adversarial attacks when
σAg
t and σBa

t are respectively applied during the timestep
t(t ≤ tc) and t(t = T, T − d, ...tc + 2d, tc + d) for image
generation, in comparison to the case where σBa

t is used for



Figure 8. The first four figures from the left show the mainly observed trend for quality of images (x0) when the Adversarial Attacks
are not performed. The remaining images show the consistently observed trend of diminished image quality when adversarial attacks are
performed. The y-value of the blue-colored graph corresponds to QBa

t while the y-value of the red-colored point corresponds to QBa
1 .

all timesteps t(1 ≤ t ≤ T ). In short, it can be said that
the suggested approach is effective for making the diffusion
model more robust from adversarial attacks if the mean of r
is greater than zero.

According to Figure 7, when the agent is trained in a
situation where tc are 10,20 and 30, there is almost no dif-
ference in preserving the quality from adversarial attacks
between σ scheduling by agent and fixed-scheduler. This
can be confirmed by the r1 not distinctively deviated from
the zero. In addition, this phenomenon can be confirmed
from both datasets, CelebA and ImageNet.

However, when the agent is trained in situations where tc
are 40,50 and 60, there is a distinctive difference in preserv-
ing the quality from adversarial attacks between σ schedul-
ing by the agent and fixed-scheduler. This can be confirmed
by the r1 greater than zero. This can be confirmed from
both datasets CelebA and ImageNet.

In addition, there is a trend that the r1 increases as tc
where the agent starts to schedule the σ becomes bigger.
This can be confirmed from both datasets CelebA and Ima-
geNet.

5.2.2 Analysis

The observations can be attributed to the following reasons.
As tc increases, there are more timesteps subjected to ad-
versarial attacks, leading to a greater number of denoising
steps becoming defective. Fixed scheduling of σ fails to
counteract these adversarial attacks, resulting in a ten-
dency for the quality of the generated x0 to decrease as tc
increases. In contrast, because the agent learns a σ schedul-
ing policy capable of addressing these adversarial attacks,
the decline in the quality of the generated x0 is expected to
be relatively less. Because of these, the gap between the
quality of the generated x0 under the fixed scheduling of
σ and the quality of the generated x0 under the σ schedul-
ing learned by the RL algorithm increases when adversarial
attacks occur at a greater number of timesteps near zero.

6. Conclusion

This study introduces a novel strategy to enhance the ro-
bustness of DPMs against adversarial attacks, particularly
addressing the challenges posed by Lipschitz Singularities.
Through the strategic scheduling of the σ hyperparameter
using the RL, we have demonstrated a significant improve-
ment in the robustness and quality of image generation un-
der adversarial attacks. Our approach not only mitigates the
impact of adversarial attacks near zero timesteps but also
provides a scalable solution that could be extended to other
generative model architectures also facing challenge posed
by Lipschitz Singularities. The empirical evidence pre-
sented underscores the potential of our method to serve as
a robust framework for future research in generative model-
ing, paving the way for more stable and reliable generative
models in the face of adversarial attacks.

7. Limitation

Although there are different noise schedulers utilized in dif-
fusion process for training the diffusion models, this paper
does not reflect the result from them such as cosine sched-
uler [26].

8. Appendix

Figure 8 shows the cases where quality of images, sched-
uled with σ maintained as zero across the whole denois-
ing process, decreases are observed at timesteps near zero
when the adversarial attacks are conducted on timesteps
near zero.
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