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Abstract

Malicious attackers generate adversarial instances by
introducing imperceptible perturbations into data. Even in
the black-box setting where model details are concealed,
attackers still exploit networks with cross-model transfer-
ability. Despite the notable success of untargeted attacks,
achieving targeted attack transferability remains a chal-
lenging endeavor. Recent investigations have demonstrated
the efficacy of ensemble-based techniques. However, utiliz-
ing additional models to carry out ensemble attacks brings
extra costs. To reduce the number of white-box models
required, model augmentation methods augment the given
network to produce a variant of diverse models, contribut-
ing useful gradients for attack. In this work, we propose
Diversified Weight Pruning (DWP) as an innovative model
augmentation technique specifically designed to facilitate
the generation of transferable targeted attacks. In contrast
to prior techniques, DWP preserves essential connections
while simultaneously ensuring diversity among the pruned
models, both of which are identified as pivotal factors for
targeted transferability. DWP is shown effective with ex-
periments on ImageNet under challenging conditions, with
enhancements of up to 10.1%, 6.6%, and 7.0% across ad-
versarially trained models, Non-CNN architectures, and
Google Cloud Vision respectively.

1. Introduction

Deep neural networks (DNNs) have achieved noteworthy
advancements across domains of applications. However,
recent investigations have uncovered vulnerabilities within
DNNSs. Adversaries can launch adversarial attacks, which
introduce imperceptible alterations into benign images, de-
ceiving classification models. Consequently, numerous
studies on adversarial attacks have been developed to as-
sess the robustness of DNNs. [2, 22, 45]. Adversarial per-
turbations can be effectively crafted through gradient-based
algorithms in the white-box setting. Even within the black-
box scenarios where details of the target models’ implemen-
tations and parameters are concealed, malicious actors can
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Figure 1. Big picture of DWP. We leverage the weight pruning
technique to produce additional diversified models from existing
white-box networks per attack iteration. By protecting necessary
weight connections in each network, the quality of models is well-
preserved. These additional pruned models can better impose se-
mantics of the target class, yielding higher targeted transferability.

still exploit the victim by employing cross-model transfer
attacks with substitute networks. The ability to transfer ad-
versarial attacks between distinct models poses a significant
threat to the reliability of deep learning applications and has
drawn substantial attention.

Previous works have introduced diverse methods en-
hancing the transferability of untargeted attacks. Despite
the achievement that untargeted transfer attacks have made,
where the attack success rate can be over 90%, obtaining
targeted attack transferability remains challenging [5, 27].
Nevertheless, the targeted attack could be more practical in
areal-world scenario. For example, transferable targeted at-
tacks can be employed as "honey pots” within CAPTCHA
systems designed to distinguish between human users and
automated bots. By launching transferable attacks against
robotic agents, it is possible to induce these agents to pro-



vide erroneous responses to a predefined class. Given that
the probability of a human user providing such a response
is low, we can infer that a robot is attempting to subvert the
system. Therefore, an effective targeted transferable attack
is vital since the bots’ implementations are unknown.

Ensemble-based approaches have been shown effective
in generating transferable targeted attack examples with
multiple networks as substitute models [27, 55]. The gradi-
ents provided by the substitute models are accumulated and
recalculated to provide a more general update direction for
the adversarial examples. Collecting a sufficient amount of
models to participate in the ensemble attack is crucial to en-
sure the diversity of gradients to escape the local minimum
of the network. Nonetheless, the necessity of extra white-
box networks brings overhead for the attack pipeline. To re-
duce the resources needed while maintaining the power of
the ensemble attack, model augmentation techniques create
additional networks by altering the existing ones and devel-
oping adversarial examples with these generated networks
altogether. Ghost Networks (GN) [24] inserts extra dropout
layers and random skip connections into the original net-
works to produce additional models. Duel-Stage Random
Erosion (DSNE) [8] improves GN by introducing uniform
erosion on the remaining parameters after applying GN, fur-
ther increasing the diversity of the generated models.

However, those methods randomly drop neurons away
without considering their significance to the prediction and
lack of protection on necessary parameters. To avoid de-
stroying network performance, prior works require heavy
tuning on the hyper-parameters like dropout, skip connec-
tion, and the second erosion rates. The inserted dropout
layers’ location should also be examined. Those hyper-
parameters vary in architecture and require sophisticated
investigation to obtain a satisfactory result. In the case of
the targeted attack, the quality of white-box substitute mod-
els plays a critical role. Rather than merely moving away
from the original class, the semantics of targeted adversar-
ial examples need to be close to the target class to acquire
higher transferability [23, 31]. Without properly tuning for
the previous model augmentation methods, the network per-
formance may be severely affected since important parame-
ters are altered. Dropping or disturbing the significant com-
ponents in substitute networks can mislead targeted adver-
sarial examples and yield worse transferability.

To deal with these problems, we propose an improved
model augmentation approach Diversified Weight Pruning
(DWP) using the idea of model compression. Model com-
pression reduces the storage and computation overhead
without substantially affecting performances [9, 12, 21, 28].
With the over-parameterized property [4] of neural net-
works, weight pruning [12] can compress the model while
maintaining accuracy by removing redundant connections
only. To generate transferable targeted adversarial exam-

ples, we apply random weight pruning to each accessible

network to form additional ones. The attack success rate is

improved by ensemble attacks with generated diverse mod-
els. Fig. | summarizes our proposed pipeline.
In summary, our contributions are as follows:

* We propose a simple yet effective transferable targeted
attacks methodology, Diversified Weight Pruning (DWP)
that leverages the idea of weight pruning to preserve
necessary parameters within networks, reducing the time
needed for searching optimal hyper-parameters because
important connections are protected.

* Comprehensive experiments are conducted on the
ImageNet-compatible dataset used in the NeurlPS 2017
adversarial attack competition [20]. The average targeted
success rate of DWP reaches 81.30% across CNNs.

* DWP remains competitive in challenging scenarios, im-
proving the targeted success rate with up to 10.1%
and 6.6% on average when transferring to adversarially
trained models and non-CNN architectures.

» DWP exhibits its efficacy by generating targeted attacks
on the real-world Google Cloud Vision service, yielding
a notable improvement of 7.0%.

2. Related work
2.1. Transferable attack

We focus on simple transferable attacks [55], which require
neither additional data nor further training on networks
compared to the resource-intensive ones [11, 17, 18,47, 52].
Existing attack methods can be categorized into 4 groups:
input transformation, gradient optimization, ensemble and
model augmentation, and advanced loss function.

Input transformation Motivated by the success that data
augmentation has achieved in standard training [37], sev-
eral works advocate attacking the transformed input to pre-
vent overfitting on white-box models to increase the trans-
ferability on black-box ones. DI [49] uses random resizing
and padding throughout the iterative attack. TI [6] enumer-
ates several translated inputs and fuses the gradients from
all augmented data. SI [25] leverages the scale-invariant
property of CNNs and employs multiple scale copies from
each input image. Admix [47] extends the concept of mixup
[54], attacking the mixup version of the data.

Gradient optimization Optimization-based methods are
widely adopted [2, 10, 19, 40] in generating adversarial ex-
amples. With iterative optimization-based methods [2, 19],
better solutions to the objective can be obtained by itera-
tively attacking models and updating adversarial examples.
Dong et al. [5] combine momentum techniques with itera-
tive attacks, accumulating gradients at each iteration to es-
cape local optimum and stabilize the updating direction. Lin



et al. [25] apply Nesterov accelerated gradient for optimiza-
tion, giving adversarial examples an anticipatory updating
to yield faster convergence. Wang and He [46] introduce
variance tuning-based momentum to reduce the variance of
gradients at each iteration. Huang and Kong [15] leverage
integrated gradients to include smoothing, attention modifi-
cation, and optimization during attacking.

Ensemble and model augmentation Adversarial exam-
ples generated by ensembling multiple white-box networks
are more likely to transfer to black-box ones [27]. Instead
of simply fusing the output confidence from each model,
Xiong et al. [50] suggest reducing the gradient variance of
collected networks. To further improve ensemble-based ap-
proaches, model augmentation produces additional models
from the existing one. Li et al. [24] acquire ghost networks
(GN) by employing dropout and skip connections on the
existing model and ensemble all generated models’ predic-
tions. DSNE [8] further improves the diversified ensemble
via dual-stage erosion. Yuan et al. [53] use reinforcement
learning to automatically find transformations suitable with
white-box networks to yield more diversity.

Advanced loss function While cross-entropy is a widely
used loss function in standard training, it also serves as the
objective for many adversarial attack algorithms. However,
cross-entropy is found to have a saturation problem in tar-
geted attack scenarios [23], as the output confidence of the
target class approaches one. To this end, alternative loss
functions attempt to provide more suitable gradients for op-
timization. Li ef al. [23] leverage Poincaré distance as the
loss function, which amplifies the gradient magnitude as the
confidence of the target class grows. Zhao et al. [55] pro-
pose a simple logit loss, which has constant gradient mag-
nitude regardless of the output probability.

2.2. Network pruning

The intensive cost of computation and storage hinders ap-
plications of neural networks, especially on embedding sys-
tems. Network Compression aims to reduce the scale of net-
works while maintaining their performance, making them
more feasible for deployment. With the over-parameterized
property [4], network pruning is a compression technique
that aims at removing redundancy within the model. Le-
Cun et al. [21] use the second-derivative information to find
redundant weights in networks. Han et al. [12] show that
neural networks can highly preserve performance even if
trimming more than half of their connections. It is also in-
vestigated that retraining the pruned model after compres-
sion can achieve higher accuracy [9, 28].

3. Methodology

Unlike simply decreasing the accuracy in untargeted attack,
the adversarial examples semantics require proximity to the
intended class to maximize the targeted transferability [23,
31]. The quality of white-box substitute models plays an
important role in assuring attacks’ efficacy.

Model augmentation techniques provide an efficient way
to generate a group of auxiliary models from the existing
one to participate in the ensemble attack. Since the gen-
erated models are different from the original network, they
can produce diverse gradients given input, which is valu-
able in enhancing the attack performance. However, ex-
tant methodologies employ random neuron dropout without
considering their relevance to predictive outcomes. The net-
work’s performance may deteriorate substantially as critical
parameters are perturbed or dropped. It requires meticulous
tuning for hyper-parameters such as dropout and skip con-
nection rates to secure the quality of generated models. As
the architecture of models varies, these hyper-parameters
exhibit structural variation and demand intricate examina-
tion to yield satisfactory results.

To reduce the efforts for tuning hyper-parameters in the
existing model augmentation methodologies, we design a
simple yet effective algorithm Diversified Weight Pruning
(DWP) that leverages the idea from model compression to
generate networks in a performance-aware way. Given that
DWP preserves the essential parameters and only alters the
redundant neurons, it acquires high-quality auxiliary net-
works without heavy tunning on hyper-parameters. Addi-
tionally, as the vital parameters are protected, ensuring good
semantic representation in the auxiliary models, the targeted
attack transferability can be further boosted.

In this section, we establish current state-of-the-art tech-
niques for iterative attacks and demonstrate how DWP cre-
ates auxiliary models from the given white-box network and
combines them with other techniques. Due to its simplicity
of design, DWP enables a seamless plug-and-play in com-
bination with relevant methodologies.

3.1. Preliminary

Given a network 6 and a benign example x, we generate a
targeted adversarial example 2°%" for the target class 7/t
by solving the following constrained optimization problem:

adv | target,
Y 0)

arg min J(x s.t. ||:vadv — xHOO <e (1

padv

where J is the loss function for multiclass classification and
€ is the perturbation budget under [, norm aligning with
previous works. We use logit loss as our objective function
J following Zhao et al. [55] to circumvent the gradient sat-
uration problem of cross-entropy. To obtain a strong base-
line, we choose methods from gradient optimization (NI)



and input transformation (SI, TI, DI) abbreviated as NI-SI-
TI-DI in combination with the proposed DWP. Additional
baseline details are provided in Appendix Sec. 6.1.

3.2. Diversified Weight Pruning

Our proposed DWP increases the diversity of white-box
models for the ensemble via weight pruning techniques.
First, we sort the connections of the white-box network by
the L1 norm of their weight values since it is better than
L2 at preserving accuracy [12]. With a predefined rate 7,
we only consider the lowest (100 - )% “prunable” since
weights with small absolute values are shown unnecessary
[12]. Networks can preserve accuracy after these connec-
tions are pruned away even without retraining [12].

For our pruning operation, we first identify the set of
prunable weights. Let «y be the (100 - (1 — r))-th percentile
of weights in . We formulate the prunable set as:

I'@,r)={weblw<~}Co. (2)

With I'(0,7) collecting all the prunable weights of 6, we
introduce an indicator vector for it:

HF(@,T) = ()‘17 )\Qa ceey )\K)) (3)

where k is the total number of weights in 6 =
{w1,wa, ..., w,} including non-prunable ones. \; is deter-
mined by whether its corresponding w; € 6 is in the prun-
able subset I'(6, r):

b
0,

Supported by the indicator vector Ilp(g -y, pruning opera-
tion P(-) can protect the non-prunable weights by masking:

ifw; e T(0,71)
otherwise '

“4)

P0,r) = (1, —Ilp@p,y ©b) © 0, &)

where © denotes the element-wise multiplication, 1, =
(1,1,...,1) € R" denotes an all-one vector and b =

(b1, ba, ..., bs) is a vector with b; i Bernoulli(ppern ). Poem
represents the probability of pruning each connection inde-
pendently. IIrg,,y and b both are binary masks with iden-
tical layout as 6. Ilp g . is responsible for protecting non-
prunable weights, while b is for random pruning. Each bi-
nary element in IIp(g, -y © b indicates whether to prune the
corresponding weight value in #. The main difference from
Dropout [39] used in previous model augmentations [8, 24],
is that DWP only considers dropping prunable weights.
Instead of producing all the pruned models beforehand,
we acquire pruned models at each iteration right before
gradient computing. With this longitudinal ensemble strat-
egy [8, 24], the storage and computation overhead is almost
identical to the original attack procedure. We provide the
new attack objective that employs DWP as the following:

arg min J (2%, 4 P(0, 1)) s.t. ||xadV —

il <e
gadv o0

(6)
Without the need for network retraining or extra data,
our proposed DWP demonstrates a notable simplicity and
lightweight nature. Owing to its straightforward design,
DWP exhibits compatibility with a broad spectrum of
gradient-based, input transformation attacks, as well as ad-
vanced loss functions, making it an adaptable and versatile
solution. Additional integration details of DWP with related
works are provided in Appendix Sec. 6.2.

4. Experiments

In this section, we introduce experiment settings and
demonstrate results of transferable attacks under various
scenarios such as single-model, multiple-model ensemble,
and real-world black box Google Cloud Vision service. A
variant of architectures and adversarially trained models are
evaluated. We report results for the targeted attack success
rate as it is known to be more challenging and realistic in
practice. Additional untargeted results are provided in the
Appendix. Additionally, we provide time cost analysis of
DWP in Appendix Sec. 11. To explore whether auxiliary
networks produced by DWP exhibits gradient diversity, an
additional ablation study is provided in Appendix Sec. 12.

4.1. Experimental Setup

Dataset Following previous studies [17, 18, 31, 55], we
focus on the targeted attack transferability of the ILSVRC
2012 [35] since it is more difficult than other datasets (e.g,
MNIST and CIFAR-10) that has fewer classes and smaller
images. The ImageNet-compatible dataset [33] which con-
tains 1000 samples provided by the NeurlPS 2017 adversar-
ial attack competition [20] is applied in the following ex-
periments. The dataset contains 1000 class, and each image
is officially assigned a target class for a fair comparison.

Models We apply 7 naturally trained CNNs: Inception-
v3 (Inc-v3), Inception-v4 (Inc-v4) [41], inception-resnet-v2
(IncRes-v2) [42], ResNet-50 (Res-50), ResNet-101 (Res-
101) [13], VGGNet-16 (VGG-16) [38] and DenseNet-
121 (Den-121) [14], 4 naturally trained Vision Trans-
formers (ViTs): ViT-Small-Patch16-224 (ViT-S-16-224),
ViT-Base-Patch16-224 (ViT-B-16-224)[7], Swin-Small-
Patch4-Window7-224 (Swin-S-224), Swin-Base-Patch4-
Window7-224 (Swin-B-224)[29], 3 naturally trained Multi-
Layer Perceptrons (MLPs):  Mixer-Base-Patch16-224
(MLP-Mixer) [43], ResMLP-Layer24-224 (ResMLP) [44],
gMLP-Small-Patch16-224 (gMLP) [26], and 2 adversari-
ally trained CNNs: ens3-adv-Inception-v3 (Inc-v3ens3) and
ens-adv-inception-resnet-v2 (IncRes-v2ens) [45]. All the
networks are publicly accessible in [48].



Source Model: Res-50 Source Model: VGG-16
—VGG-16 —Den-121 —Inc-v3 | —Res-50 —Den-121 —Inc-v3
NI-SI-TI-DI 52.0 75.3 31.5 22.9 27.6 144
+GN 55.6 76.9 37.1 29.9 32.9 19.5
+DWP 65.0 82.0 42.1 30.2 334 19.9
Source Model: Den-121 Source Model: Inc-v3
—Res-50 —VGG-16 —Inc-v3 | —Res-50 —VGG-16 —Den-121
NI-SI-TI-DI 37.8 25.5 13.9 1.39 3.70 5.90
+GN 53.3 36.4 28.0 1.40 2.50 1.50
+DWP 59.2 44.8 325 10.9 12.7 16.0

Table 1. Targeted success rates of transferring to naturally trained CNNs without the ensemble strategy. The “—” prefix stands for the
black-box network. Results with targeted / untargeted attack success rates are reported.

Baselines We compare the transferability of DWP with
the related model augmentation method, Ghost Networks
(GN) [24], in combination with the state-of-the-art tech-
niques NI-SI-TI-DI. GN drops activation outputs with a
dropout rate Agn and multiplies the skip connection by a
factor sampled from the uniform distribution U [1 — (gN, 1+
(on]- For non-residual networks like VGG-16 and Inc-v3,
we insert dropout layers after each activation function. As
for residual networks such as Res-50 and Den-121, skip
connection erosion on the blocks of each network is applied.
Throughout the experiment, we set Agn = 0.012,({gn =
0.22 following the settings in [24].

Hyper-parameters Following the settings in [50, 55], we
use 100 iterations with step size « = 2/255 for I-FGSM
and set the maximum perturbation budget € = 16 under L,
norm in all iterative attacks. Comply with Li et al. [23], we
set the probability pp; of DI to 0.7 and select a Gaussian
kernel with a kernel length of 5 for W in TI. For SI, due
to the limited computing resources, we set the number of
scale copies M = 3. The momentum decay factor p is
set to 1 same as [5, 23, 25, 55]. For our proposed DWP,
the probability ppem is 0.5 and the prunable rate r is 0.7.
In other words, we prune 35% of the connections of each
network in expectation in each iteration.

4.2. Single model attack transferability

In our initial experiment, we conducted a comparative
assessment of the single-model transfer targeted attack,
specifically focusing on the baseline NI-SI-TI-DI, combing
with GN and DWP in Tab. 1. We also provide the untargeted
attack results in Appendix Tab. 8. The generation of ad-
versarial examples was executed within a white-box model,
subsequently transferring these adversarial instances to pre-
viously unseen black-box networks. Notably, it is evident
that the DWP model consistently exhibits superior perfor-
mance across various experimental configurations.

From our findings, DWP achieves a significant enhance-

NI-SI-TI-DI +GN +DWP
-Inc-v3 65.2 77.5 83.1
-Inc-v4 71.3 70.0 86.1
-IncRes-v2 73.2 69.0 85.4
-Res-101 20.9 26.1 40.6
Average 57.65 60.65 73.80

Table 2. The targeted success rates of transferring across similar
CNNs. “-” stands for the black-box network with the other three
serving as the white-box ones for the ensemble.

ment for the baseline in attack success rates when trans-
ferring from different source models. Specifically, we ob-
serve a 10.1% improvement when transferring from Res-
50, a 6.2% improvement from VGG-16, a substantial 19.8%
improvement from Den-121, and a notable 9.5% improve-
ment from Inc-v3, on average. In addition, when comparing
DWP with GN, which introduces connection dropout to en-
hance model diversity, DWP consistently outperforms GN
across all models. An advancement of attack success rate is
achieved for 6.5%, 0.4%, 6.27% and 11.4% on average for
Res-50, VGG-16, Den-121 and Inc-v3 respectively.

Our experimental results reveal an intriguing observa-
tion: the extent of improvement achieved by DWP over
GN is contingent upon the redundancy of the source model.
As illustrated in Fig. 2, we investigate how the elimina-
tion of network connections, through weight pruning, af-
fects model accuracy. VGG-16 exhibits the highest degree
of redundancy, as evidenced by its ability to maintain accu-
racy even when up to 80% of its connections are pruned.
In contrast, other networks experience a near-total accu-
racy loss under the same pruning conditions. DWP demon-
strates substantial improvements over GN for models like
Res-50, Den-121, and Inception-v3. However, its perfor-
mance aligns more closely with GN for VGG-16, primarily
due to the latter’s abundance of redundant parameters.



80

o
o

Accuracy
N
o

20

0.0 0.2 0.4 0.6 0.8 1.0
Rate of connection pruned

Figure 2. The accuracy (%) of networks when different rates of
connections are pruned.

4.3. Ensemble transfer in various scenarios

Our study encompasses the exploration of targeted transfer-
ability across 4 distinct scenarios: transferability between
CNNeE, transferability to adversarially trained models, trans-
ferability to non-CNN architectures, and transferability to
the real-world Google Cloud Vision service. We craft ad-
versarial examples using an ensemble comprising multiple
white-box networks and evaluate targeted success rates on
the specified black-box model. Each of the K white-box
models in the ensemble is weighted equally 8, = 1/K.

4.3.1 Transferability between CNNs

CNNs with similar architectures Tab. 2 summarizes the
targeted attack success rates across Inc-v3, Inc-v4, IncRes-
v2 and Res-101. The group of CNNs was popular for eval-
uating attacks [5, 6, 23, 49, 51] with architecture resem-
blance. From the results, DWP shows 16.15% average im-
provement over NI-SI-TI-DI and outperforms leading meth-
ods GN by 13.15%.

CNNs with distinct architectures Given the ubiquity of
CNNs in contemporary applications, we examine the trans-
ferability among distinct architectures suggested by Zhao et
al. [55]. We selected 4 well-established and canonical CNN
models: Res-50, VGG-16, Den-121, and Inc-v3. The re-
sults of targeted attack transferability between these CNNs
are presented in Tab. 3. Our results demonstrate that DWP
substantially enhances the efficacy of attack methodologies,
surpassing the performance of competing techniques such
as GN by 4.75% on average. Notably, the 4 chosen CNN
features distinctive design characteristics, incorporating el-
ements such as Residual, Dense, and Inception blocks. Our
findings underscore the advantages of employing a diversi-

NI-SI-TI-DI +GN  +DWP
-Res-50 70.1 68.7 77.7
-Den-121 86.7 85.0 894
-VGG-16 77.1 80.1 87.2
-Inc-v3 66.9 724 70.9
Average 75.20 76.55 81.30

Table 3. The targeted success rates of transferring across distinct
CNNs. The “-” prefix stands for the black-box network with the
other three serving as the white-box ones for ensemble.

NI-SI-TI-DI +GN +DWP
Inc-v3ens3 50.0 51.6 65.3
IncRes-v2ens 194 29.8 39.0
Average 34.7 40.7 5215

Table 4. Targeted attack success rates for defensed models.

NI-SI-TI-DI +GN +DWP
Res-18 (Je|oo = 1) 33.2 33.6 37.0
Res-50 (J€]oo = 1) 40.5 394 414
WideRes-50-2 (|e|oo = 1) 37.8 354 39.5
Res-18 (Je|2 = 3) 12.6 12.6 15.2
Den-121 (Je|]2 = 3) 17.4 18.0 19.2
VGGI16 (Je]l2 = 3) 12.5 13.3 15.5
Resnext-50 (|e|2 = 3) 19.1 19.2 21.0
Res-50 21.9 16.8 22.3
Den-121 27.6 29.0 39.0
VGG-16 8.60 8.80 18.6
Inc-v3 17.4 17.9 26.7
Inc-v3ens3 224 23.3 30.5
IncRes-v2ens 22.3 22.6 30.0

Table 5. The targeted success rates of transferring to adversarially
trained networks from the ones with different architectures and e.

fied ensemble approach when targeting black-box CNNss.

4.3.2 Transferability to adversarially trained models

Adversarial training [30, 45] is the most effective technique
for defending against malicious attacks by being trained
with adversarial examples. Successfully attacking such
models indicates the ability to break the strongest defense.
Under the scenario of transferring to adversarially trained
models, we ensemble 4 naturally trained networks (Res-
50, Den-121, VGG-16, and Inc-v3) as white-box models to
simulate the situation when attackers know little about de-
fense. The 2 one-step adversarially trained networks (Inc-
v3ens3 and IncRes-v2ens) will act as our black-box model
with defense separately.

Tab. 4 summarizes the targeted transferability results to
adversarially trained networks. The result of the untar-
geted counterpart is provided in Appendix Tab. 9. Under
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Figure 3. A demo of our DWP attack on Google Cloud Vision.
The attacked image with the ground truth label of “Beakers” is
recognized as the target class “Padlocks” assigned by the NeurlPS
2017 ImageNet-compatible dataset.

such challenging cases, DWP can still alleviate the dis-
crepancy between white-box naturally-trained and black-
box adversarially-trained networks, bringing about up to
17.45% improvement to the baseline on average. The effi-
cacy of the diversified ensemble safeguarding essential con-
nections is highlighted again when black-box networks ex-
hibit substantial distinctions from white-box models.

Authors in [45] propose “ensemble adversarial training”,
which trains the network with adversarial examples gener-
ated from external models. While the single-step attack in
the procedure is less costly, the models fall short of resist-
ing iterative attacks even in black-box scenarios. Therefore,
we also explore the black-box targeted attack results on the
models with multi-step adversarial training [36]. With the
multi-step adversarially trained white-box networks joining
the ensemble, the victim network is vulnerable to DWP at-
tack even if it undergoes multi-step adversarial training.

Tab. 5 summarizes the targeted attack results of the en-
semble composed of Res-18 (|¢|s = 2), Res-50 (J€|oo = 2)
and WideRes-50-2 (Je|oc = 2). The two upper groups in
Tab. 5 report the targeted success rates on different CNN
architectures and the norm of € used in adversarial training.
The attack success rates on naturally-trained CNNs and en-
semble adversarial-trained models are reported in the lat-
ter groups. We provide additional experiments for transfer-
ring from naturally-trained models to multi-step adversari-
ally trained networks in the Appendix Tab. 10.

4.3.3 Transferring to non-CNN architectures

In practice, implementation details of defenders’ models re-
main undisclosed to potential attackers, and various archi-
tectures other than CNNs might be utilized. Beyond CNNs,
contemporary works have successfully addressed computer
vision tasks through Vision Transformers (ViTs) [7, 29] and
Multi-Layer Perceptrons (MLPs) [26, 43, 44]. To ensure the
effectiveness of DWP stands out in those non-CNN scenar-

Attack Method | NI-SI-TI-DI  +GN +DWP
ViT-S-16-224 25.9 315 37.3
ViT-B-16-224 24.8 29.9 374
Swin-S-224 26.7 29.1 36.7
Swin-B-224 239 27.1 32.9
MLP-Mixer 21.7 242 30.9
ResMLP 51.3 56.5 64.1
eMLP 20.4 25.3 30.4
Average 27.81 31.94 38.53

Table 6. Targeted attack success rates for Non-CNN architectures.

NI-SI-TI-DI +GN +DWP
Google Cloud Vision 27 43 50

Table 7. Targeted success rates (%) on Google Cloud Vision out
of 100 randomly selected images.

ios, we conduct a comprehensive study evaluating the tar-
geted transferability from CNNs to these models. Targeted
adversarial images were generated on an ensemble com-
prising 4 naturally trained CNNs and subsequently trans-
ferred to the non-CNN network. From Tab. 6, the efficacy
of model augmentations persists, even in instances where
black-box networks lack convolution operations beyond in-
put projections. DWP improves the results on both ViTs and
MLPs, outperforming NI-SI-TI-DI and GN for 10.72% and
6.59% on average respectively. Appendix Tab. 11 reports
an additional untargeted result.

4.3.4 Transferring to Google Cloud Vision

Google Cloud Vision is a publicly accessible service that
enables users to create their vision application with pre-
trained APIs. As the design behind the tool remains con-
cealed, we use Google Cloud Vision to evaluate our adver-
sarial examples, assuring DWP achieves strong black-box
targeted transferability. Google Cloud Vision predicts a list
of labels with their corresponding confidence scores. It re-
turns label annotations only when the confidence score is
above 50%. Neither gradients nor parameters of the under-
lying system are accessible. Previous works leverage query-
based attacks [1, 3, 16] or black-box transferability [27, 55].
However, query-based methods often require large numbers
of queries, and the existing transferable attacks still have
substantial room for improvement.

In this experiment, we randomly select 100 correctly la-
beled images by Google Cloud Vision from the Imagenet-
compatible dataset. Four naturally trained CNNs, Res-50,
VGG-16, Den-121, and Inc-v3, are applied to generate ad-
versarial examples. We identified a successful attack if at
least one of the returns by the API is semantically close to
its corresponding target class given an example. We sum-



—e— -Den-121 DWP
-®- -Den-121 GN

80

_ B -Res-50 DWP

R N\ -Res-50 GN

%] \

2 60 \

T \

o \

" \

g *

g 40 \\

() \

ko] \

t} \

- \

[0} \

220 \

©

© \
\ \
\ ]
\Y

0 b R NN o I SN

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Parameters Dropout Rates

Figure 4. The comparison of DWP and GN for the targeted success
rates under different prunable rates.

marize the results in Tab. 7. DWP outperforms the baseline
and GN by 23% and 7%, respectively. Fig. 3 demonstrates
an example on Google Cloud Vision. More demos can be
found in Appendix Sec. 13.

4.4. Ablation analysis on prunable rates

DWP achieves a wider hyper-parameter tolerance
Prior model augmentation methods employ random param-
eter dropout without considering parameter significance,
rendering them sensitive to hyperparameter choices. In the
absence of meticulous configuration of the dropout rate,
these methods experience rapid and unacceptable deterio-
ration in performance. DWP circumvents this challenge
by selectively altering only unnecessary parameters while
preserving the integrity of crucial ones. Fig. 4 illustrates
the variation in targeted attack success rates under differ-
ent parameter dropout rates. Specifically, in DWP, all pa-
rameters with the lowest 100 - 7% weight value are pruned
away, aligning with the number of connections dropped in
GN by setting pperm = 1. Observably, DWP exhibits re-
duced sensitivity to the parameter dropout rate, in contrast
to the pronounced decline in attack success rates witnessed
in GN as the dropout rate increases. In practical scenarios
involving the involvement of a group of white-box models
in the ensemble, the manual adjustment of the optimal rate
for each model in GN poses significant challenges. Given
its broader tolerance for the dropout ratio, DWP emerges
as a more user-friendly and effective approach for obtaining
high-quality auxiliary models through model augmentation.

Finding the optimal prunable rates This investigation
delves into the targeted attack success rates across various
prunable rates r. Parameters featuring the lowest 100 - %
weight values are identified as prunable and subsequently
pruned with a probability of pyerm = 0.5. The parameter
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Figure 5. The targeted success rates under different prunable
rates r on each black-box model. Each curve shows the trade-off
between the diversity and stability of pruned models. The curve
for mean targeted success rates reaches its maximum at r = 0.7.

r plays a pivotal role in determining the group size of con-
nections eligible for weight pruning, allowing for the gen-
eration of more diverse auxiliary models at higher prunable
rates due to increased parameter flexibility. Nevertheless,
as a trade-off, excessive pruning of connections results in a
decline in the quality of auxiliary networks, leading to per-
formance instability. To strike a balance in this trade-off,
we systematically explore different prunable rates and ob-
serve the consequential changes in the targeted success rate
with four CNNGs, as illustrated in Fig. 5. Notably, the mean
attack success rates reach their peak when » = 0.7. At this
optimal prunable rate, DWP prunes approximately 35% of
weight connections on average.

5. Conclusion

In this paper, we introduce Diversified Weight Pruning
(DWP), a novel approach harnessing network compression
to enhance the targeted transferability of adversarial
attacks. The safeguarding of crucial parameters within
the network ensures the preservation of auxiliary model
quality generated by DWP. Through comprehensive
evaluations on ImageNet, our study demonstrates that
DWP surpasses the performance of state-of-the-art model
augmentation methods in the realm of transferable targeted
attacks. This improvement is particularly pronounced in
challenging scenarios, such as the transfer to adversarially
trained models and non-CNN architectures. = Notably,
DWP distinguishes itself through its design simplicity and
wide tolerance for hyperparameter selection, facilitating
seamless integration with other related techniques. This
characteristic renders DWP amenable to plug-and-play
implementation without the necessity for extensive pa-
rameter tuning. In conclusion, DWP emerges as a potent
and versatile solution for enhancing attack transferability.
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6. Additional related works

In this section, we provide a detailed introduction to the re-
lated works that we used as baseline (NI-SI-TI-DI) through-
out the work and show how DWP is combined with it.

6.1. Baseline

Momentum and Nesterov Iterative Method (NI) [5, 25]
Inspired by Nesterov Accelerated Gradient [32], the Nes-
terov Iterative Method (NI) modifies Momentum Iterative-
FGSM [5] by adding the historical gradients to current ad-
versarial examples z,, and gets ;" in advance. Gradients at
the ahead x** instead of the current z,, will be used for up-
dating. The scheme helps accelerate convergence by avoid-

ing the local optimum earlier:

S =Tp - Gno1 @)
gn _ /J X gnfl + ij(wr;les, ytargel; 9) (8)
Tpt1 = Clip, (z, — a - sign(gy)). &)

Here p is the decay factor of the historical gradients. The
gradient computed encourages adversarial examples to in-
crease confidence logit output by the white-box network
model 6 on the target class through gradient ascent with
learning rate . A clipping operation onto the e-ball cen-
tered at the original input image = is at the end of each iter-
ation. To preserve more information about the gradient for
attacking [56], we don’t include the L1 normalization.

Scale Invariant Method (SI) [25] Neural networks can
preserve output even though the input image x goes through
scale operations such as S, (x) = z/2™. With the scale-
invariant property, each composite of white-box networks
and scale operations becomes different functions. Adver-
sarial examples can enjoy more diverse gradients:

M-1
1 nes target ,
gn = - Gn-1+ M* m§:0 VLJ(Sm(xn )7y £ 19) (10)

M is the number of scaled versions feeding into the network
for each image.

Diverse Input Patterns (DI) [49] Inspired by data aug-
mentation techniques [37] used in network training, DI im-
poses random resizing and padding on each image before it
feeds into network models to avoid overfitting. Straightfor-
ward cooperation with NI and SI is as follows:

M-1
1 . .
G =1 gn-1 37 D Vad (S (T(, por)), "% 6).

The introduced 7' decides whether to apply random resiz-
ing at each iteration with probability pp;, which degenerates
when pp; = 0.

Translation Invariant Method (TI) [6] To deal with dif-
ferent discriminative regions [6] of various defense neural
networks, TI produces several translated versions for the
current image in advance and computes the gradient for
each separately. These gradients will then be fused and
used to attack the current image. [6] also shows that one
can approximate the gradient fusion using convolution. The
approximation prevents TI from enduring the costly com-
putation on excessive translated versions for every single
image, also yielding the further revised updating procedure:

M-1
n = Hgn-1+Wior Z Vi d (S (T(x3, por)), y 55 0).

m=0
(12)
W is the convolution kernel matrix applied. Some typical
options are linear, uniform, or Gaussian kernel.

6.2. Combining DWP with NI-SI-TI-DI
We acquire pruned models at each iteration right before gra-
dient computing and combine with NI-SI-TI-DI:

gn = K- On—1+

1% M—-1
377 2 Vel (SnlT @ o).y P(O.1)). (13

where the pruning operation P(.) is obtained in Eq. (5).

Finally, with K white-box models participating in longi-
tudinal ensemble, our final DWP attack procedure is shown
as follows:

gn =M gn-1+

w M-1 K

T D2 D2 BV (Sm(T (5, por)), y e P8y, 7)),
m=0 k=1

(14)
where 3, are the ensemble weights, Zszl Br = 1.

7. Untargeted attack for single model attack
transferability

We provide untargeted attack results transferring from a sin-
gle source model in Tab. 8. The untargeted attack’s goal is
to minimize the overall accuracy of the victim model with-
out considering which class to predict. As a result, the un-
targeted success rate is higher than the targeted one on av-
erage. In this situation, DWP still prevail NI-SI-TI-DI for
3.47% when transferring from Res-50, 3.93% from VGG-
16, 6.63% from Den-121, and 4% from Inc-v3, on average.
When comparing with GN, DWP obtains 2.67%, 0.83%,
2.83% and 11.9% improvement for Res-50, VGG-16, Den-
121 and Inc-v3, respectively. We can observe a similar phe-
nomenon mentioned in Fig. 2 that the extent of improve-



Source Model: Res-50 Source Model: VGG-16
—VGG-16 —Den-121 —Inc-v3 | —Res-50 —Den-121 —Inc-v3
NI-SI-TI-DI 92.3 96.3 79.7 80.1 83.4 74.8
+GN 93.2 96.7 80.8 82.1 86.4 79.1
+DWP 95.5 98.2 85.0 83.6 86.7 79.8
Source Model: Den-121 Source Model: Inc-v3
—Res-50 —VGG-16 —Inc-v3 | —Res-50 —VGG-16 —Den-121
NI-SI-TI-DI 87.0 86.9 71.8 71.8 74.6 69.7
+GN 90.4 89.3 77.4 58.1 72.3 62.0
+DWP 91.7 92.2 81.7 72.7 80.4 75.0

Table 8. Untargeted success rates of transferring to naturally trained CNNs without the ensemble strategy. The “—” prefix stands for the
black-box network. Results with targeted / untargeted attack success rates are reported.

Attack Method | NI-SI-TI-DI +GN +DWP Attack Method NI-SI-TI-DI +GN +DWP

Inc-v3ens3 80.3 84.1  88.0 Ees-;g Eﬁoo = B 8(2) gg 8§
es- €loo = . . .

IncRes-v2ens 52.7 66.0 67.5 WideRes-50-2 (|e|oo = 1) 0.0 02 o1
Average 66.5 75.05 77.75 Res-18 (|6‘2 =3) 0.0 0.1 0.0
Den-121 (Je|2 = 3) 0.0 0.0 0.0
Table 9. The untargeted success rates of transferring to adversari- VGG-16 (|e| = 3) 0.0 0.0 0.0
ally trained models. DWP outperforms GN and DSNE over 10%. Resnext-50 (|e|s = 3) 0.0 0.0 0.0

ment brought by DWP is affected by the network redun-
dancy. When the model is more sensitive to the parameter
drops, DWP exhibits better performance.

Table 10. The targeted success rates of transferring to three-step
adversarially trained networks from naturally trained CNNs.

Attack Method | NI-SI-TI-DI +GN +DWP
8. Untargeted attack for ensemble transfer to ViT-S-16-224 481 577 550
adversarially trained model ViT-B-16-224 525 61.4 64.8
We report the untargeted attack success rate for ensemble SW%H'S'224 57.6 65.1 66.5
transferring to the adversarially-trained model in Tab. 9. Swin-B-224 53.9 62.9 02.1
DWP suppress NI-SI-TI-DI by a notable 11.25%. When MLP-Mixer 50.1 57.7 59.1
comparing to the related model augmentation methods, ResMLP 72.7 78.5 80.6
DWP is 2.7% higher in untargeted success rate than GN. gMLP 443 55.5 54.4
Average 54.17 62.69  63.21

9. Transferring to multi-step adversarially
trained models

Transferable targeted attacks from naturally-trained CNNs
to multi-step adversarially trained networks remain an open
problem. Recent attacks only show non-targeted results
[34]. Even the resource-intensive attack [31] fails to achieve
satisfied targeted success rates. We choose four naturally-
trained networks (Res-50, VGG-16, Den-121, Inc-v3) as
white-box source models to generate the adversarial exam-
ples, transferring to the multi-step adversarially trained net-
works provided by Salman et al. [36]. Tab. 10 shows the
failure of transferring targeted attacks from the ensemble of
naturally-trained CNNs. The attack success rates approach
0% in all cases. All the existing methods fail to effectively
attack such a scenario and DWP is not an exception. It re-
quires sophisticated investigation into this difficult setting.

Table 11. The untargeted success rates of transferring to Non-CNN
architectures. Our DWP maintains higher success rates stably.

10. Untargeted attack for ensemble transfer to
non-CNN architectures

The result of the untargeted attack success rate transferring
from four naturally-trained CNNs (Res-50, VGG-16, Den-
121, Inc-v3) to non-CNNs (ViT-S-16-224, ViT-B-16-224,
Swin-S-224, Swin-B-224, MLP-Mixer, ResMLP, gMLP) is
presented in Tab. 11. DWP exceeds the NI-SI-TI-DI by a
notable 9.04% on average and also suppress GN by 0.52%
in untargeted attack success rate. The results further vali-
date the efficacy of DWP.



Time (sec.) | Res-50 Den-121 VGG16 Inc-v3
NI-SI-TI-DI | 10.50 12.26 17.64 13.19
+DWP 10.86 15.87 18.72 15.62

Table 12. Time cost of NI-SI-TI-DI and DWP on a single CNN.

11. Time cost of DWP

To ascertain the practical feasibility of DWP without impos-
ing excessive computational overhead, we present a time
cost analysis in Tab. 12. The results are obtained using a
batch size of 16 images and 100 attack iterations, with each
cell representing the average from five different runs on a
single RTX A5000 GPU. Remarkably, with an equivalent
number of forward passes, DWP introduces minimal over-
head in comparison to the NI-SI-TI-DI.

12. Perturbations diversity from auxiliary
models

Recent works [6, 25] have improved transferability with
output-preserving operations. Despite the model exhibit-
ing similar output given an example, gradients calculated
through backward operations differ as some randomness is
introduced. The diverse gradients participating in the attack
prevent overfitting to local optimal, yielding better-targeted
attack transferability. Motivated by the finding that gradi-
ent diversity benefits transferability, we examine the diver-
sity between perturbations from the pruned auxiliary mod-
els generated in DWP.

Liu et al. [27] first studied the effectiveness of ensem-
ble attacks in enhancing transferability. They demonstrate
the diversity of the ensemble by showing near-zero cosine
similarities between perturbations from different white-box
networks. Following Liu et al. [27], we calculate cosine
similarities between perturbations generated from the addi-
tional auxiliary models produced by DWP. From each of
our four naturally trained CNNs, we acquire five auxiliary
models with different connections pruned. We term the
cosine similarity between perturbations of pruned models
from an identical CNN as an intra-CNN similarity. The case
from different CNNs is termed as inter-CNN similarity. To
avoid cherry-picking, both intra-CNN and inter-CNN simi-
larities come from the average of the first ten images in the
ImageNet-compatible dataset. Furthermore, we only use NI
in combination with DWP to produce perturbations in this
experiment to prevent other factors from affecting the result.

Fig. 6 is a symmetric matrix containing 16 (4 x 4) blocks.
The diagonal blocks summarize ten (C3) intra-CNN simi-
larities while the non-diagonal blocks summarize 25 (5 x 5)
inter-CNN similarities in cells. The diagonal cells are all
1.0 since they are all from two identical perturbation vec-
tors. As for the non-diagonal cells, we find the cell values
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Figure 6. Perturbation cosine similarities between pruned models.
Each diagonal block summarizes 10 (C3) intra-CNN similarity
cells. Each non-diagonal block summarizes 25 (5 x 5) inter-CNN
similarity cells. The pairwise cosine similarity matrix is symmet-
ric and shows orthogonality between perturbations.

in diagonal blocks (intra-CNN) slightly higher than in non-
diagonal blocks (inter-CNN). However, these values are still
close to zero, appearing dark red. The results show that
whether two auxiliary models come from the same CNN or
not, the generated perturbations are always nearly orthogo-
nal. These observations on orthogonality support our claim
that auxiliary models obtained via DWP provide more di-
versity for attacking.



13. Results of DWP on Google Cloud Vision
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