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Abstract

Deep neural networks are susceptible to attacks from ad-
versarial examples in recent years. Especially, the black-
box attacks cause a more serious threat to practical applica-
tions. However, while most existing black-box attacks have
achieved a high success rate in deceiving models, they have
not focused on the stealthiness of adversarial examples, of-
ten exhibiting suspicious visual appearances. To address
this issue, this paper proposes the Mask Momentum Iter-
ative Attack (MMIA), which introduces a masking mecha-
nism and adopts an optimal perturbation strategy to iden-
tify regions of an image most vulnerable to attacks. This
approach effectively ensures the transferability and stealth-
iness of adversarial examples. Simultaneously, by integrat-
ing image enhancement techniques and temporal and spa-
tial momentum terms into the iterative process of the attack,
we prevent the attack from getting stuck in local optima, fur-
ther improving the transferability of adversarial examples.
To enhance the success rate of black-box attacks, we apply
MMIA to a model ensemble using a joint optimization strat-
egy. We demonstrate that adversarially trained models with
a strong defense ability are also susceptible to our black-
box attacks. We conduct extensive experiments on classi-
fication tasks using common vision models, and our results
significantly demonstrate the superiority of our method over
state-of-the-art approaches when considering both transfer-
ability and stealthiness.

1. Introduction

As Deep Neural Networks (DNNs) continue to excel in
a broad spectrum of applications, including computer vi-
sion [24], natural language processing [46], and acoustics
[41], the challenges to their security, e.g., adversarial attacks
[16, 30, 31, 33, 38, 47, 54] and the infiltration of backdoor
trojans [9, 17, 37], are gradually being unveiled. Adversar-
ial examples, crafted by subtly introducing imperceptible
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Figure 1. We show four types of iterative algorithms to generate
adversarial examples on the CIFAR-10 dataset with the ResNet-50
model. First row: the perturbations generated by each adversarial
algorithm. Second row: the corresponding adversarial examples.
(a) PGD. (b) MI-FGSM. (c) SMI-FGSM. (d) MMIA. Our method
specifically generates perturbation in the most sensitive regions for
classification model, reaching a high SSIM score.

noise into clean instances, pose a formidable security chal-
lenge by easily inducing erroneous predictions from DNNs.
This phenomenon represents a potent threat to the perfor-
mance of deep learning applications.

In the past few years, a series of works have been pro-
posed to conduct adversarial attacks under different condi-
tions and settings [1, 14, 28]. Generally, adversarial attacks
can be categorized into white-box attacks and black-box at-
tacks. In white-box attacks, the attacker has complete ac-
cess to the target model, including its structure, parameters,
and training data. This allows the attacker to leverage such
information to generate more effective adversarial exam-
ples, including gradient-based attacks [16], optimization-
based attacks [4], etc. In black-box attacks, the attacker can
only observe and interact with the target model in a limited
manner, possessing little or no knowledge about the spe-
cific details of the target model, including query-based at-
tacks [7], transfer-based attacks [14], etc. In this paper, we
primarily focus on the more challenging black-box attack,
which is more relevant for the practical deployment of deep
learning applications.

Though several attempts have been adopted to perform
black-box attacks, existing works often overlook the factor



of maintaining image structure stability [14, 15, 52, 56], e.g.
the stealthiness of black-box attacks. Consequently, their
practical applications are far from satisfactory. It is worth
noting that gradient-based attacks have shown promising re-
sults by focusing on improving the transferability of adver-
sarial examples, thereby achieving success in black-box at-
tacks. There is an interesting observation that in a white-
box environment, iterative attacks outperform single-step
attacks, whereas in a black-box environment, the opposite
is true [26]. Therefore, to generate adversarial examples
with high success rates in both white-box and black-box
settings, most researchers currently adopt the strategy of de-
signing algorithms based on iterative attacks. For instance,
MI-FGSM [14] introduces momentum to prevent iterations
from falling into local peaks, while SMI-FGSM [52] uti-
lizes spatial momentum to enhance the transferability of ad-
versarial examples. However, they often neglect the factor
of stealthiness. After multiple iterations of attacking the en-
tire image, the image content may suffer considerable dam-
age and distortion, as shown in Figure1 (a), (b) and (c).

To address the aforementioned issues, this paper pro-
poses the Mask Momentum Iterative Attack (MMIA), which
introduces a masking mechanism and spatial momentum at
each iteration step. Inspired by attention mechanisms that
models focus more on salient regions when classifying im-
ages [10], we design an optimal perturbation strategy to
identify the areas in the image most susceptible to attacks
and generate masks. Simultaneously, to ensure the trans-
ferability of adversarial examples, we create diverse input
patterns by applying transformations [20, 56] such as resiz-
ing, cropping, and rotation to prevent network overfitting.
Moreover, throughout the iterative process of the attack, we
maintain temporal [14] and spatial [52] momentum term
continuously. This prevents the attack from getting stuck
in local optima, further enhancing the transferability of ad-
versarial examples. We demonstrate that the adversarial ex-
amples generated by MMIA achieve high success rates in
both white-box and black-box attacks, while maintaining
high SSIM [55] scores. This ensures that the images of ad-
versarial examples generated by MMIA are closer to clean
samples, as shown in Figure1 (d).

To further enhance the transferability of adversarial ex-
amples, we propose a multi-model joint optimization strat-
egy to apply MMIA to model ensemble. Existing research
indicates that if an adversarial example deceives multiple
models, it is more likely to maintain adversarial character-
istics against other black-box models [39, 51]. Specifically,
we fuse gradient information from various models at each
iteration step and combine it with a maske mechanism to
generate more robust perturbations. We demonstrate that
adversarial examples generated by MMIA under the multi-
model joint optimization strategy can successfully deceive
robust models obtained through ensemble adversarial train-

ing in a black-box manner.
To the best of our knowledge, we are the first to introduce

the maske mechanism to ensure the stealthiness of adver-
sarial images and incorporate spatial momentum term and
fusing gradients from multiple models to generate more ro-
bust black-box adversarial samples. Extensive experiments
were conducted on CIFAR-10 and ImageNet datasets, cov-
ering a variety of common visual models and adversarial
models for classification tasks. Our results demonstrate that
our approach not only achieves high attack effectiveness but
also maintains elevated SSIM score, showcasing its effec-
tiveness across different datasets and models.

2. Releated Works

2.1. Adversarial examples

Adversarial examples are specially designed samples that
possess features not easily perceivable by humans but can
lead to incorrect prediction by DNNs. In recent years, a
series of studies on adversarial attacks have been proposed
[22, 29, 32, 34–36, 50, 53, 57, 58]. Adversarial attack meth-
ods are typically classified into several categories. For ex-
ample, based on whether there is a specified target for the
attack, they can be classified as targeted attacks or non-
targeted attacks. Based on the scope of the attack, adver-
sarial attacks can be divided into digital world attacks and
physical world attacks. Based on whether the attacker has
sufficient knowledge of the model being attacked, they can
be classified as white-box attacks or black-box attacks, etc.

White-box attacks refer to attacks where the attacker
has complete internal information and access rights, allow-
ing them to fully understand the structure, parameters, al-
gorithms, and training data of the target model. Szegedy
et al. [47] first proposed the concept of adversarial exam-
ples and used the L-BFGS method for generation. By uti-
lizing the gradient information of the target model, Good-
fellow et al. [16] proposed a fast gradient algorithm called
the Fast Gradient Sign Method (FGSM) for rapidly gener-
ating adversarial examples. Building upon FGSM, Kurakin
et al. [27] designed iterative versions called the Basic It-
erative Method (BIM) and the Iterative Least-Likely Class
Method (ILCM). Furthermore, Madry et al. [40] extended
the concept of clipping to a projection process and added
random perturbation during initialization, creating the Pro-
jective Gradient Descent (PGD) attack method. It is consid-
ered the strongest first-order attack method. Although the
aforementioned methods have achieved significant success
in white-box attacks, there has been a substantial decrease
in performance when conducting black-box attacks.

Black-box attacks refer to situations where the attacker
lacks complete internal information and access rights to
the target model, and can only observe the model’s behav-
ior through inputs and outputs. They can be divided into



two categories: 1) query-based attacks, 2) transfer-based
attacks. Query-based attacks estimate gradients based on
confidence scores [8, 12, 42] or decision [2, 6, 11] infor-
mation output by the black-box model in order to con-
duct attacks. However, this type of attack still requires ac-
cess to the target model, albeit limited to querying its out-
puts. Transfer-based attacks stem from the transferability
of adversarial examples [47]. They conduct white-box at-
tacks on substitute models and then transfer these adversar-
ial examples to the target model to achieve the attack ef-
fect. Therefore, transfer-based attacks pose a higher threat
in the real world. To enhance transferability, Dong et al.
[14] improved the BIM method based on the idea of mo-
mentum, proposing the Momentum Iterative Fast Gradi-
ent Sign Method (MI-FGSM). Furthermore, Xie et al. [56]
proposed the Diverse Inputs Iterative Fast Gradient Sign
Method (DI2-FGSM), which generates adversarial exam-
ples by creating diverse input patterns, further enhancing
transferability. Based on translation invariance, Dong et al.
[15] proposed the Translation-Invariant Fast Gradient Sign
Method (TI-FGSM). To stabilize the direction of gradient
updates, Wang et al. [52] introduced the spatial domain gra-
dient in images, proposing the Spatial Momentum Iterative
Fast Gradient Sign Method (SMI-FGSM). Although these
methods have made significant improvements in black-box
transfer attacks, they still focus on perturbing the entire im-
age, leading to a decrease in the stealth of the image.

2.2. Gradient-based Attack Methods

Several gradient-based methods have been proposed to gen-
erate the adversarial examples. In this section, we provide a
brief review of them.

Fast Gradient Sign Method (FGSM) [16] generate an
adversarial example by performing a single-step update that
increases the model’s loss for the given image x:

xadv = x+ ϵ · sign(∇XJ(xadv, y)), (1)

where ∇XJ the gradient of the loss function with re-
spect to the image x and sign(·) is the sign function ensur-
ing that the generated perturbation satisfies the sign of the
L∞ norm distace.

Projected Gradient descent (PGD) [40] is a variant of
the Iterative version of FGSM(I-FGSM), initializing with
uniformly random noise, and stands out as one of the most
powerful first-order attack methods. It iteratively applies
gradient updates with a small step size α, projecting the per-
turbation into a specified range at each iteration.

xadv
t+1 = Πϵ(x

adv
t + α · sign(∇xJ(x

adv
t , y))), (2)

where xadv
0 = x, and Πϵ is a clip function that projects

perturbation into the specified range ϵ when exceed during
the number of iterations T .

Momentum Iterative Fast Gradient Sign Method
(MI-FGSM) [14] stabilizes the update direction in itera-
tive attacks by incorporating a temporal momentum term,
preventing convergence to local optima and enhancing the
transferability of adversarial examples.

gt+1 = µ · gt +
∇xJ(x

adv
t , y)

∥∇xJ(xadv
t , y)∥1

, (3)

xadv
t+1 = xadv

t + α · sign(gt+1), (4)

where gt is the accumulated gradient up to the t-th and µ
is the decay factor.

Spatial Momentum Iterative Fast Gradient Sign
Method (SMI-FGSM) [52] introduces the spatial momen-
tum iteration term in iterative attacks to stabilize the up-
date direction. It integrates multiple gradients from ran-
dom transformations of the same image, utilizing informa-
tion from the contextual region to generate a stable gradient.
The formulation is as follows:

gst+1 =

N∑
i=1

λi∇xJ(Hi(x
adv
t ), y), (5)

xadv
t+1 = xadv

t + α · sign(gst+1), (6)

where Hi(·) transforms xadv
t by adding random padding

around the image and resizing it to the original size.

3. Approach
In this paper, we propose a Mask Momentum Iterative Al-
gorithm (MMIA), which can generate adversarial examples
deceiving both white-box and black-box models with min-
imal disruption to the image. In this section, we initially
articulate the problem definition and then provide a detailed
overview of the proposed algorithm framework, as illus-
trated in Figure 2. We first elucidate the optimal pertur-
bation strategy by introducing a masking mechanism to per-
turb the most sensitive regions of the image at each iteration
step. Subsequently, we expound on the proposed MMIA al-
gorithm, enhancing the transferability of adversarial exam-
ples by integrating image augmentation techniques, as well
as the momentum term into the iterative process of the at-
tack. Finally, we employ a joint optimization approach for
model ensembles, leveraging attack information from mul-
tiple models to update perturbations effectively. The adver-
sarial examples discussed in this paper satisfy the L∞ norm
restriction in the non-targeted attack fashion.

3.1. Problem Definitions

Given a deep neural network classifier F and an input image
x with a true label y, an adversarial sample xadv can lead
to a wrong prediction by the model i.e. F(x) ̸= y. For ad-
versarial example generation, the objective is to maximize
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Figure 2. The framework of our MMIA method. We employ an optimal perturbation strategy, identifying the most sensitive regions of
the image for perturbation at each iteration step through the introduction of a maske mechanism. Then, we enhance the transferability
by integrating image enhancement techniques, along with temporal and spatial momentum terms into the iterative process of the attack.
Simultaneously, we propose a model ensemble joint optimization approach, making full use of attack information from multiple models.

the loss function J(xadv, y) of the classifier F . Therefore,
the constrained optimization problem can be expressed as:

argmax
xadv

J(xadv, y) s.t. ∥x− xadv∥∞ < ϵ, (7)

where ϵ is the size of adversarial perturbation and ∥ · ∥∞
is the distance metric used to quantify the distance between
two inputs x and xadv under the constraint of the L∞ norm
sufficiently small.

Meanwhile, we choose SSIM (Structural Similarity In-
dex) to measure the similarity between two images, consid-
ering brightness, contrast, and structure. The SSIM value
ranges from 0 to 1, with higher values indicating greater
similarity between images. Its calculation is as follows:

SSIM (x,xadv) =
(2µxµxadv

+ c1) (2σxxadv
+ c2)(

µ2
x + µ2

xadv
+ c1

) (
σ2
x + σ2

xadv
+ c2

) ,
(8)

where µ and σ are the mean and standard deviation of
the image, and c1 and c2 are constants.

The objective is to obtain adversarial samples that suc-
cessfully deceive the model while maintaining a high level
of concealment, i.e., a high structural similarity. The prob-
lem can be defined as follows:

argmax
xadv

J(xadv, y)+SSIM(x,xadv), s.t. ∥x−xadv∥∞ < ϵ,

(9)

3.2. Mask Momentum Iter Attack

Although some methods have made breakthroughs in the
transferability of black-box attacks, achieving high attack
success rates, they often neglect the property of conceal-
ment when generating adversarial examples. The obtained
adversarial examples frequently exhibit significant differ-
ences from the original images, i.e., visible distortions, pos-
ing obstacles to practical applications.

To address this issue, we propose a MMIA (Masked
Momentum Iterative Method), outlined in the framework
shown in Figure 2. Inspired by the varying focus of CNNs
on different regions in an image, as demonstrated by meth-
ods like GradCAM, we introduce a masking technique into
each iteration step. We present an optimal perturbation
strategy aimed at perturbing only the most sensitive regions
of the classifier during each optimization step, rather than
disturbing the entire image. This approach aims to main-
tain the structural similarity of the adversarial image con-
sistently. In addition, we have also considered image en-
hancement techniques and temporal and spatial momentum
techniques to enhance the effectiveness of the attack.

3.2.1 Optimal Perturbation Strategy

To seek the perturbation region of an image, which involves
finding a mask to restrict the pixel area to be modified dur-
ing the optimization steps. In each iteration, we first utilize
the following formula for backpropagation to obtain the gra-
dient information for the entire image:



Algorithm 1 MMIA Algorithm

Input: Classifier f with loss function J , real example x,
ground-truth label y, outer iterations t, inner iterations
n, transformation probability p, perturbation size β,
max perturbation ε, perturbation step size α, decay fac-
tor µ;

Output: Adversarial example x∗;
1: Init transformations function T (·);
2: Grad0 = 0; x∗ = x;
3: for i = 0 to t− 1 do
4: for j = 0 to n− 1 do
5: x∗

ij = T (x∗
i ) with the probability p

6: Get gradient Gj of x∗
ij by Eq 10.

7: end for
8: Obtain spatial momentum gradient gsi by

gsi =
1

n

∑
Gj

9: Update Gradi+1 by

Gradi+1 = µGradi +
gsi

∥gsi ∥1
10: Mask = SearchMask(Gradi+1, β);
11: Update x∗

i+1 by Eq 13.
12: Clip x∗

i+1 according to ε;
13: end for
14: return x∗ = x∗

t

Grads = ∇xJ(x
adv
t , y), (10)

This gradient information contains gradients for the
RGB channels, and we sum their absolute values to merge
them into a two-dimensional gradient matrix:

Grad =

3∑
i=1

abs(Gradsi), (11)

where abs(·) is the absolute value function, and i respec-
tively represent the RGB three channels.

Positions with larger gradient values are expected to have
larger updates. Therefore, we prioritize selecting these po-
sitions for updates to obtain the region to be updated in
each iteration. Assuming the perturbation area occupies a
percentage β% of the total image area, we search for the
top β% largest values in the gradient matrix, denoted as the
threshold. The construction rules for the mask are as fol-
lows:

Mask =

{
1, Gradij > threshold

0, Gradij ≤ threshold
(12)

3.2.2 Attack Algorithm

The Mask Momentum Iterative Attack (MMIA) is summa-
rized in Algorithm 1. To enhance the effectiveness of the
attack, we employ image enhancement and spatial momen-
tum techniques to diversify the input images. Following
the DI-FGSM, we introduce random transformations to the
input image at each iteration, generating different input pat-
terns to introduce randomness to the adversarial perturba-
tion, thereby enhancing transferability. For spatial momen-
tum techniques, we follow the concept of SMI-FGSM. We
transform the image by adding random padding around it
and resizing it to the original size, inducing pixel shifts.
The final gradient Grad obtained by Eq 5 considers the
accumulation of spatial momentum from multiple random
transformations, achieving different gradient contributions
from context pixels.

Regarding temporal momentum techniques, we draw in-
spiration from MI-FGSM, continuously updating and re-
taining gradient information generated in previous itera-
tions to prevent falling into local optima. So, we further
update the gradient Grad based on Eq 3. Ultimately, We
employ an optimal perturbation strategy by Eq 12 to find the
Mask for the obtained gradient information at each itera-
tion step and update it according to the following formula:

x∗
i+1 = x∗

i + α · sign(Gradi+1) ·Mask (13)

3.3. Model Ensemble Joint Optimization

In this section, we explore how to effectively use MMIA
to attack model ensembles. To enhance performance and
robustness, ensemble methods have been widely adopted
in research [5, 18, 25]. Previous studies [39] indicate that
if a sample remains adversarial across multiple models, it
may capture an inherent direction that consistently deceives
these models and is more likely to transfer to other models
simultaneously. The ensemble approach can also be applied
to adversarial attacks, thereby achieving potent black-box
attacks.

In [14], it is suggested to attack the ensemble of model
logits by merging multiple logit activations. [39] proposes
averaging the predicted probabilities of each model during
prediction. As MMIA involves selecting sensitive regions
based on gradient information, we recommend to merge and
attack the gradient information of the model ensemble. The
specific approach is as follows: in each iteration, let Gradk

be the gradient information obtained after MMIA attacking
the k-th model, and Maskk be the corresponding mask
matrix obtained using the optimal perturbation strategy. We
obtain the final gradient for updating perturbation using the
following rule and generate perturbation.



Table 1. The attack success and stealth score (AS3) (%) of non-targeted adversarial attacks against 10 models on ImageNet dataset. *
represent the white-box attacks. The complete results can be found in Appendix B.

Attack Inception v3 ResNet50 VGG16 MobileNet DenseNet GoogleNet ResNet50adv MobileNetadv ShuffleNetadv RegNetXadv

Inception v3

FGSM 45.95* 21.51 21.55 32.89 24.62 28.69 6.81 21.01 19.52 6.24
MI-FGSM 63.23* 24.23 23.29 33.57 24.89 27.52 4.29 18.54 15.42 4.39

SMI-FGSM 49.82* 19.00 16.37 25.80 18.47 21.35 4.30 21.07 9.73 3.65
MMIA 71.54* 38.41 31.59 41.73 39.73 40.13 5.08 24.38 11.86 4.72

ResNet50

FGSM 24.14 37.38* 24.52 31.66 27.48 26.77 6.37 21.13 18.54 6.19
MI-FGSM 34.5 63.60* 38.55 41.93 44.53 35.68 5.04 20.81 14.27 5.19

SMI-FGSM 22.94 49.95* 21.02 29.19 28.10 23.06 4.31 24.96 11.25 4.23
MMIA 57.76 71.67* 56.46 58.31 65.42 55.12 5.43 30.78 10.79 5.27

RegNetXadv

FGSM 46.39 43.65 40.61 46.64 44.30 46.77 35.66 50.65 32.77 51.26*
MI-FGSM 62.93 57.97 53.35 61.36 59.10 63.38 50.36 63.32 44.66 70.22*

SMI-FGSM 29.12 24.15 23.84 33.79 25.61 31.25 30.07 42.72 33.57 42.07*
MMIA 66.00 58.97 53.04 61.66 57.53 67.85 56.26 69.28 50.63 74.27*

Grad =

K∑
i=1

Gradk ·Maskk, (14)

where k is the number of the models. We summarize
the MMIA algorithm for attacking model ensemble whose
gradients are averaged in Appendix A.

4. Experiments
In this section, we present experimental results to demon-
strate the effectiveness of the proposed method. We first
specify the experimental setup in Sec. 4.1. Then, in Sec.
4.2 and Sec. 4.3, we discuss the results of attacking a sin-
gle model and a ensemble of models respectively. Finally, a
series of ablation experiments are conducted in Sec. 4.4.

4.1. Experimental Setup

Datasets. We perform experiments using the ImageNet [13]
and CIFAR-10 [23] datasets, which are widely utilized in
classification tasks. For evaluation purposes, we selected
1000 images from the validation sets of each dataset, ensur-
ing a diverse representation of different categories.

Model Architectures. For each dataset, we investigate
6 normal trained models: ResNet50 [19], VGG16 [45],
Inception V3 [49], DenseNet [21], MobileNet [44], and
GoogleNet [48]. Additionally, for the ImageNet dataset,
we reported results for four adversarially trained models
[50]: ResNet50adv , ShuffleNetadv [59], MobileNetadv , and
RegNetXadv [43].

Baseline. In our experiments, we compare our method
against one-step gradient methods i.e. FGSM, and itera-
tive methods including MI-FGSM and SMI-FGSM. Since
optimization-based methods cannot explicitly control the
distance between adversarial examples and their corre-
sponding genuine examples, they were not directly com-
pared to our approach. All experiments in this study were
conducted based on non-targeted attacks under the L∞
norm bound.

Hyper-Parameters. For all experiments, the maximum
perturbation is set to 16, with pixel values ranging from [0,
255]. And for all iterative methods, we set the number of
iterations to 15 with a step size of 1.6. For MI-FGSM, we
followed the recommendation in [14] and set µ to 1.0. As
for SMI-FGSM, we configure the transformation count n to
be 12. For MMIA , we set the transformation probability p
to 0.5 and perturbation size β to 50%.

Evaluation Metrics. For the assessment of attack effec-
tiveness, we employ the Attack Success Rate (ASR). Evalu-
ating the ASR is meaningful only when the model correctly
classifies the original images. Therefore, we only consider
images that the model correctly classifies for calculating the
Attack Success Rate:

ASR =
Nattack

Ncorrect
, (15)

where Ncorrect is the number of images in the test set
that the model correctly classifies, and Nattack is the num-
ber of images in the Ncorrect set that attack successfully.

For assessing the stealthiness of the attacks, we use the
Structural Similarity Index (SSIM) score, as indicated by
Eq 8. In the end, we utilize the Attack Success and Stealth
Score (AS3) to compute the algorithm’s overall perfor-
mance by AS3 = ASR · SSIM .

4.2. Single-Model Attack

We report the AS3 for various attacks on different models
within the ImageNet dataset and the CIFAR-10 dataset in
the Table 1 and Table 2 separately. The complete results
can be found in Appendix B. The adversarial examples are
generated for different normal and adversarial models using
the 4 attack methods mentioned in the experimental setup.
Evaluations are conducted separately under white-box and
black-box scenarios.

From the table, we can observe that MMIA consistently
achieves the highest AS3 scores in most cases on two
datasets, demonstrating the effectiveness and stealthiness



Table 2. The attack success and stealth score (AS3) (%) of non-
targeted adversarial attacks against 4 models on CIFAR-10 dataset.
* represent the white-box attacks. The complete results can be
found in Appendix B.

Attack Inception v3 ResNet50 MobileNet DenseNet

Inception v3

FGSM 58.72* 43.84 64.01 52.39
MI-FGSM 76.55* 55.03 67.56 57.79

SMI-FGSM 75.66* 54.58 66.41 55.78
MMIA 78.73* 65.01 69.15 64.30

ResNet50

FGSM 58.09 51.37* 62.49 50.13
MI-FGSM 75.62 85.63* 71.57 77.23

SMI-FGSM 76.05 86.10* 73.31 78.39
MMIA 80.98 87.10* 77.52 83.72

MobileNet

FGSM 70.18 60.39 71.96* 62.70
MI-FGSM 80.34 63.02 86.13* 64.80

SMI-FGSM 82.60 65.95 87.81* 67.92
MMIA 84.79 76.21 87.92* 75.94

DenseNet

FGSM 58.38 48.18 63.92 50.26*
MI-FGSM 76.36 76.08 70.79 85.20*

SMI-FGSM 72.75 76.49 72.60 83.80*
MMIA 79.37 82.30 75.21 87.09*

of the algorithm. Analysis reveals that the one-step gra-
dient method FGSM has the lowest SSIM score, indicating
poorer stealthiness, despite its impressive performance in
black-box attacks. Iterative methods MI-FGSM and SMI-
FGSM show improved SSIM scores compared to FGSM,
achieving strong attack effectiveness, but still causing sig-
nificant structural damage to the entire image. In contrast,
our MMIA approach perturbs the most sensitive regions of
the image using a masking mechanism, enhancing stealthi-
ness while maintaining a high attack success rate.

4.3. Model Ensemble Joint Optimization

In this section, we demonstrate the effectiveness of MMIA
using a strategy of jointly optimizing model ensemble. We
compare the AS3 of MMIA when conducting black-box at-
tacks on individual models versus using a strategy of joint
optimization for attacks. Our study involves 5 models on the
ImageNet dataset: Inception v3, ResNet50, VGG16, Mo-
bileNet, and DenseNet. The experimental results are shown
in Table 3. We initially attack each individual model to gen-
erate adversarial samples and perform black-box testing on
the remaining four models (see lines 2-6). For the joint op-
timization strategy attack, we generate adversarial samples
by attacking with four models and conduct black-box test-
ing on the remaining one model (see the last line).

It can be observed that the strategy of jointly optimizing
model ensemble is highly effective in enhancing the trans-
ferability and stealthiness of adversarial samples. Com-
pared to attacking individual models alone, attacking the
model ensemble achieves optimal results for all scenarios.

4.4. Ablation Studies

In this section, we conducted a series of ablation exper-
iments to study the impact of different parameters. We

Table 3. The attack success and stealth score (AS3) (%) of non-
targeted adversarial attacks against 5 single models and model en-
sembles on ImageNet dataset. The last row represents the joint
optimization of attacking examples against 4 other models exclud-
ing the one in each column.

Inception v3 ResNet50 VGG16 MobileNet DenseNet

Inception v3 - 38.41 31.59 41.73 39.73

ResNet50 57.76 - 56.46 58.31 61.41

VGG16 49.08 54.22 - 57.84 58.82

MobileNet 60.56 58.88 58.30 - 61.63

DenseNet 50.98 56.87 51.17 55.66 -

Ensemble 61.99 60.28 59.33 60.47 62.01
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Figure 3. Ablation studies on different mask size β. The curve
of Inception v3 corresponds to white-box attack, and the others
represent black-box attacks.

only consider attacking a single network on the ImageNet
dataset: Inception v3. The maximum perturbation value for
each pixel in all experiments is set to 16.

Mask Size β. The perturbation mask size β plays a
crucial role in enhancing the AS3 metric. If beta equals
100%, the MMIA method transforms into a conventional it-
erative attack based on momentum and image transforma-
tions. Therefore, we investigated the appropriate mask size
value. We use the MMIA to attack the Inception v3 model,
generating adversarial examples with mask sizes ranging
from 10% to 100%. The AS3 and ASR for attacking the In-
ception v3, ResNet50, VGG16, MobileNet, DenseNet and
GoogleNet model are presented in Figure 3, where the blue
curve corresponds to white-box attacks on Inception v3, and
the others represent black-box attacks.

It can be observed that for the ASR, increasing mask
size corresponds to a higher ASR. However, for the AS3,
larger mask sizes tend to impact stealthiness, i.e. compro-
mising SSIM scores. In Figure 3a, the peak of AS3 for
black-box attacks appears to be around 50%. Therefore, we
recommend setting the mask size to 50% to strike a balance
between ASR and SSIM scores.

Total iteration number t. We currently investigate the
impact of the total iteration number t. We employ MMIA
and MI-FGSM to attack the Inception v3 model with it-
eration numbers ranging from 1 to 20. Subsequently, we
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Figure 4. Ablation studies on different total iteration number t.
The curve of Inception v3 corresponds to white-box attack, and
the others represent black-box attacks.

evaluate the AS3 of adversarial examples against the In-
ception v3, ResNet50, VGG16, MobileNet, DenseNet and
GoogleNet model. The results are shown in Figure 4.

It can be observed that the MMIA outperforms MI-
FGSM in terms of AS3 at both low and high iteration
numbers. Furthermore, with the increase in iteration num-
bers, AS3 against black-box models gradually increases
and tends to stabilize, while high iteration numbers may
lead to overfitting and a decline in performance against
white-box models.

Transformation probability p. We further study the im-
pact of the transformability probability p in MMIA . We dis-
cuss the scenario when p ranges from 0 to 1. The results
are shown in Figure 5. We observe that with an increase
in p, MMIA achieves higher AS3 and ASR for black-box
scenarios, while performance for white-box scenarios de-
creases. This trend provides valuable insights for building
robust adversarial attacks in practice. Specifically, if you
know that the black-box model is entirely different from any
existing networks, setting p = 1 can maximize portability. If
the black-box model is a hybrid of a new and existing net-
work, choosing a moderate p value is advisable.

5. Case Study

Here, we showcase the effectiveness of MMIA in practical
attack scenarios. The application of MMIA is highly flex-
ible. Under the rules of unconstrained adversarial attacks
[3], we can set the mask size β to a very small value, in-
crease the step size, and allow a wide range of perturbation.
This allows the generation of highly effective adversarial
examples with minimal damage to the image. To validate
the effectiveness of MMIA , we conduct the model ensemble
MMIA on an image of a banana. The mask size was set to
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Figure 5. Ablation studies on different transformation probability
p. The curve of Inception v3 corresponds to white-box attack, and
the others represent black-box attacks.

(a) Taobao (b) PinDuoDuo

Figure 6. Attack Taobao and PinDuoDuo platform with our adver-
sarial example. The banana in (a) and (b) are identified incorrectly.

only 2%, and the perturbation range was 100. As shown in
Figure 6, this adversarial sample successfully attacks both
the Taobao and PinDuoDuo platforms while visually pre-
serving the original image, demonstrating the superiority of
MMIA in terms of effectiveness and stealthiness.

6. Conclusions

In this paper, we propose the Mask Momentum Iterative At-
tack (MMIA) method. It effectively deceives both white-box
and black-box models while maintaining stealthiness. Our
method outperforms one-step gradient-based approaches
and momentum iterative methods in terms of AS3. We con-
duct extensive experiments to validate the effectiveness of
the proposed method and perform ablation studies to inves-
tigate key influencing factors. To further enhance the trans-
ferability of adversarial examples, we recommend using the
mask mechanism to attack model ensemble and fuse multi-
ple gradients. Finally, we showcase the application of our
attack in real-world scenario. We hope that our MMIA can
inspire the development of more robust deep models.
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Appendix

A. Model Ensemble Algorithm
The MMIA algorithm for an ensemble of models is summa-
rized in Algorithm 2.

Algorithm 2 MMIA Algorithm for an ensemble of models

Input: K Classifiers with loss function J0, J1, . . . , Jk−1,
real example x, ground-truth label y, outer iterations t,
inner iterations n, transformation probability p, pertur-
bation size β, max perturbation ε, perturbation step size
α, decay factor µ;

Output: Adversarial example x∗;
1: Init transformations function T (·);
2: Grad0 = 0; x∗ = x;
3: for i = 0 to t− 1 do
4: for t = 0 to k − 1 do
5: for j = 0 to n− 1 do
6: x∗

itj = T (x∗
it) with the probability p

7: Get gradient Gj of x∗
itj by Eq 10.

8: end for
9: Obtain spatial momentum gradient gsit by

gsit =
1

n

∑
Gj

10: Maskit = SearchMask(gsit, β);
11: end for
12: Get sumGradi by Eq 14.
13: Update Gradi+1 by

Gradi+1 = µGradi +
sumGradi

∥sumGradi∥1
14: Update x∗

i+1 by
x∗
i+1 = x∗

i + α · sign(Gradi+1)

15: Clip x∗
i+1 according to ε;

16: end for
17: return x∗ = x∗

t

B. Complete Results
Table B.1 and Table B.2 show the complete results on the
CIFAR-10 dataset and ImageNet dataset, respectively

Table B.1. The attack success and stealth score (AS3) (%) of non-
targeted adversarial attacks against 6 models on CIFAR-10 dataset.
* represent the white-box attacks.

Attack Inception v3 ResNet50 VGG16 MobileNet DenseNet GoogleNet

Inception v3

FGSM 58.72* 43.84 57.74 64.01 52.39 59.08
MI-FGSM 76.55* 55.03 66.72 67.56 57.79 67.56

SMI-FGSM 75.66* 54.58 68.12 66.41 55.78 65.42
MMIA 78.73* 65.01 68.13 69.15 64.30 70.20

ResNet50

FGSM 58.09 51.37* 54.74 62.49 50.13 56.24
MI-FGSM 75.62 85.63* 70.33 71.57 77.23 70.10

SMI-FGSM 76.05 86.10* 72.36 73.31 78.39 69.67
MMIA 80.98 87.10* 80.60 77.52 83.72 75.94

VGG16

FGSM 57.48 42.03 48.18* 61.05 46.47 53.17
MI-FGSM 69.93 57.44 81.63* 67.43 58.10 63.25

SMI-FGSM 62.72 53.15 76.46* 60.18 55.20 57.56
MMIA 70.90 68.41 80.58* 67.83 68.53 62.94

MobileNet

FGSM 70.18 60.39 66.77 71.96* 62.70 67.55
MI-FGSM 80.34 63.02 74.95 86.13* 64.80 73.87

SMI-FGSM 82.60 65.95 75.05 87.81* 67.92 75.14
MMIA 84.79 76.21 80.09 87.92* 75.94 77.91

DenseNet

FGSM 58.38 48.18 52.33 63.92 50.26* 55.55
MI-FGSM 76.36 76.08 73.22 70.79 85.20* 68.93

SMI-FGSM 72.75 76.49 71.48 72.60 83.80* 67.67
MMIA 79.37 82.30 77.15 75.21 87.09* 74.28

GoogleNet

FGSM 67.53 51.54 64.02 67.87 56.86 68.46*
MI-FGSM 75.31 53.55 63.47 73.46 55.56 86.41*

SMI-FGSM 78.50 53.45 67.88 73.28 56.54 88.28*
MMIA 81.41 65.73 71.80 77.08 67.73 88.21*



Table B.2. The attack success and stealth score (AS3) (%) of non-targeted adversarial attacks against 10 models on ImageNet dataset. *
represent the white-box attacks.

Attack Inception v3 ResNet50 VGG16 MobileNet DenseNet GoogleNet ResNet50adv MobileNetadv ShuffleNetadv RegNetXadv

Inception v3

FGSM 45.95* 21.51 21.55 32.89 24.62 28.69 6.81 21.01 19.52 6.24
MI-FGSM 63.23* 24.23 23.29 33.57 24.89 27.52 4.29 18.54 15.42 4.39

SMI-FGSM 49.82* 19.00 16.37 25.80 18.47 21.35 4.30 21.07 9.73 3.65
MMIA 71.54* 38.41 31.59 41.73 39.73 40.13 5.08 24.38 11.86 4.72

ResNet50

FGSM 24.14 37.38* 24.52 31.66 27.48 26.77 6.37 21.13 18.54 6.19
MI-FGSM 34.5 63.60* 38.55 41.93 44.53 35.68 5.04 20.81 14.27 5.19

SMI-FGSM 22.94 49.95* 21.02 29.19 28.10 23.06 4.31 24.96 11.25 4.23
MMIA 57.76 71.67* 56.46 58.31 65.42 55.12 5.43 30.78 10.79 5.27

VGG16

FGSM 22.69 24.37 44.92* 32.31 26.61 27.63 6.69 20.35 19.35 6.32
MI-FGSM 33.92 37.77 64.20* 45.30 42.68 37.68 5.10 20.73 14.63 4.63

SMI-FGSM 19.37 21.58 52.67 27.90 24.14 22.68 4.49 23.52 11.72 4.62
MMIA 49.08 54.22 71.20 57.84 58.82 50.16 5.30 28.35 12.81 4.92

MobileNet

FGSM 24.81 25.11 28.15 52.87* 27.74 29.85 6.86 23.36 19.62 6.92
MI-FGSM 33.53 34.72 39.00 62.96* 37.68 34.09 4.99 26.83 17.17 5.54

SMI-FGSM 21.98 20.60 23.46 58.52* 25.51 25.12 5.01 28.65 12.52 4.66
MMIA 60.56 58.88 58.30 70.90* 61.63 58.22 5.14 43.30 14.30 6.47

DenseNet

FGSM 22.73 23.23 23.60 32.76 38.72* 25.72 6.51 21.18 19.33 5.68
MI-FGSM 33.44 38.15 34.36 40.55 63.80* 34.75 4.94 21.84 15.04 4.49

SMI-FGSM 21.25 23.78 20.36 30.42 52.97* 23.03 3.74 25.75 11.35 4.04
MMIA 50.98 56.87 51.17 55.66 71.85* 50.12 5.19 29.66 13.06 5.40

GoogleNet

FGSM 26.23 22.69 24.94 35.35 24.84 53.21* 6.73 23.16 19.28 6.26
MI-FGSM 31.47 26.72 29.98 37.99 30.11 63.67* 5.15 21.26 15.74 4.69

SMI-FGSM 21.70 17.78 17.69 29.16 19.78 56.44* 4.22 22.73 13.34 4.57
MMIA 55.47 47.76 44.62 54.57 51.82 71.59* 5.05 31.11 13.22 5.50

ResNet50adv

FGSM 45.26 43.28 40.72 46.94 43.03 48.23 49.27* 50.01 36.03 36.37
MI-FGSM 59.99 55.22 50.67 59.96 55.64 60.26 67.61* 65.65 46.21 50.70

SMI-FGSM 26.47 21.51 21.72 32.86 22.40 28.78 44.91* 45.58 35.32 27.79
MMIA 60.95 52.34 48.42 57.71 52.88 62.58 71.12* 68.46 52.96 56.08

MobileNetadv

FGSM 23.92 19.49 22.65 32.01 22.73 28.73 7.86 51.52* 15.19 6.78
MI-FGSM 28.30 19.30 20.98 35.05 22.59 32.37 21.50 69.09* 39.56 18.17

SMI-FGSM 19.00 16.09 17.39 29.97 18.81 21.93 5.32 59.93* 12.63 5.30
MMIA 45.86 33.39 34.93 51.19 38.84 45.05 10.95 70.95* 17.85 10.44

ShuffleNetadv

FGSM 25.38 23.09 23.16 35.99 24.71 33.06 21.65 40.89 53.88* 20.02
MI-FGSM 33.80 27.11 27.55 42.41 30.46 37.96 28.27 52.53 70.94* 25.69

SMI-FGSM 21.25 16.96 18.84 30.80 20.13 25.56 21.31 38.89 54.80* 18.92
MMIA 30.94 27.55 28.20 41.09 29.52 39.96 35.47 54.71 78.75* 31.25

RegNetXadv

FGSM 46.39 43.65 40.61 46.64 44.30 46.77 35.66 50.65 32.77 51.26*
MI-FGSM 62.93 57.97 53.35 61.36 59.10 63.38 50.36 63.32 44.66 70.22*

SMI-FGSM 29.12 24.15 23.84 33.79 25.61 31.25 30.07 42.72 33.57 42.07*
MMIA 66.00 58.97 53.04 61.66 57.53 67.85 56.26 69.28 50.63 74.27*
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