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Abstract

Vision-language models (VLMs) have emerged as an
effective strategy for multi-modal representation learning.
The field has invested extensive efforts to develop a multi-
tude of models pushing the boundaries of model and train-
ing data scales. Given the growing set of VLM benchmarks,
however, model releases often selectively evaluate a subset
of benchmarks. Consequently, drawing principled conclu-
sions about optimal strategies for advancing VLMs in this
fragmented landscape is a challenge. In this study, we sys-
tematically benchmark four axes of performance: zero-shot
classification, relational understanding, robustness, and re-
silience to corruptions. We evaluate all axes across nearly
60 VLMs, including recent large-scale models such as EVA-
CLIP, with scales up to 4.3B parameters and 12.8B train-
ing samples. Despite the field’s investment, we find scale,
while helpful for other axes of performance, does not aid
relational understanding. We also find transformer-based
architectures are more resilient against image corruptions
compared to other architectures. Finally, we highlight im-
proved learning objectives as a promising avenue for ad-
vancing relational understanding.

1. Introduction

Pre-training visual models with language supervision, ex-
emplified by CLIP [23], has emerged as an effective
and straightforward strategy for multimodal representation
learning. VLMs have been shown to exhibit exceptional
adaptability, displaying zero-shot capabilities in classifi-
cation and transferability [23], text and image retrieval
[4, 10, 22], robustness [34], and compositional relationships
[14, 28, 33]. Despite these advancements, the field lacks
a comprehensive corpus that evaluates the performance of
VLMs across a diverse range of benchmarks and model
types. This fragmentation hinders the ability of researchers
to draw principled conclusions about the optimal strategies
for further advancing the capabilities of VLMs. Thus, there

Factors Benchmarks
ImageNet Relation Robustness Corruption

Dataset size " % " "

Model size " % " "

Architecture ∼ ∼ ∼ "

Learning Objective ∼ " ∼ ∼

Table 1. Relational understanding requires more than scaling
dataset and model size. We shows the impact of various factors
on the performance of VLMs. Learning objective is the only factor
that helps improving the robustness (") on the Relational bench-
marks (Figure 1) while it has insignificant impact (∼) on the rest
of the benchmarks. In contrast, both scaling dataset and model
size have adverse impact (%).

is a clear need for a comprehensive analysis that bridges this
gap, providing valuable guidance for future research direc-
tions and model development in the field of visual represen-
tation learning.

Current work in this direction provides isolated insights
[3], showing that scaling training data and model sizes im-
proves performance on ImageNet and robustness bench-
marks. However, we believe there is a notable absence of
an integrated overview for understanding how VLMs fair
across other axes of performance. Furthermore, many exist-
ing investigations are limited in the number of VLMs stud-
ied with many focusing only on the original CLIP model
[3].

To address this gap, we study the performance of 59
vision-language models across diverse learning objectives
and architectures with scales of up 12.8 billion training sam-
ples and 4.3 billion parameters. We evaluate several axes
of performance including relational understanding and re-
silience to image corruptions to provide an overarching per-
spective of VLMs capabilities and shed light on promising
future research directions.
We illustrate the takeaways in Table 1 and summarize spe-
cific our contributions as follows

1. Scaling does not improve relational understanding:
While expanding the model size and training data vol-



ume serves as effective methods for boosting perfor-
mance on many benchmarks, they do not suffice to en-
hance relational understanding (Figure 2). Despite train-
ing colossal models with up to 12.8 billion samples [9]
and 4.3 billion parameters [7, 8], they show no improve-
ment on relational understanindg.

2. ViTs are more robust to corruptions: Vision trans-
former (ViT) encoders demonstrate to be more capable at
handling image corruptions compared to convolutional
architectures.

3. CLIP’s learning objective requires rethinking: We
find models with richer learning objectives, such as Neg-
CLIP and BLIP, that either include hard negatives or
use an objective which adds image-to-text matching and
image-conditioned language modeling, perform signifi-
cantly better on relational understanding.

2. Evaluation Setup
We outline below the axes of performance we evaluate
along with the choice of benchmarks for each. Next we dis-
cuss the diverse set of 59 VLMs (see Table 2) we investigate
across architectures, learning paradigms, and model/data
scales. Together the set of benchmarks and models provide
a comprehensive apples-to-apples overview of the facets of
model performance as well as the strategies most effective
for each.

2.1. Benchmarks

The evaluation of the models in this study is conducted on
four distinct axes, each providing a unique perspective on
models’ performance. These benchmarks have been care-
fully selected to cover a wide range of scenarios and chal-
lenges that the models may encounter in real-world appli-
cations.
1. ImageNet: The ImageNet dataset [17] is a large-scale,

diverse dataset that is widely used for benchmarking in
the field of computer vision. It provides a broad base for
assessing the model’s ability to understand and represent
a wide variety of objects and scenes.

2. Relation: We include relational benchmarks, that are,
Visual Genome [33], Winoground [28], and Sugar-
Crepe [14] are designed to evaluate the models’ abil-
ity to understand and represent relationships between
objects within an image (Figure 1). This is a cru-
cial aspect of vision-language models, as understand-
ing the relationships between objects can provide valu-
able context for interpreting the image. For instance, Vi-
sual Genome benchmark includes a variety of relation-
ships (denoted VG-Relation) and attributions (denoted
VG-Attribution) tasks, such as spatial relationships (e.g.,
“above”, “next to”), action relationships (e.g., “riding”,
“holding”), and appropriate attribution (e.g., “the brown
horse and the orange cat” vs. “the orange horse and the

orange brown”). Visual Genome also includes COCO-
order and Flickr30k-order, which assess the models’ sen-
sitivity to word order (e.g., “a brown cat” vs. “cat a
brown”).

3. Robustness: This set is a collection of several datasets,
including ImageNet-E [18], ObjectNet [2], ImageNet-
R [13], ImageNet-9 [29], and ImageNet-V2 [25]. These
datasets are designed to test the model’s robustness to
various transformations and perturbations. For exam-
ple, the ObjectNet dataset introduces changes in object
position, scale, and background, while the ImageNet-R
dataset focuses on transformations related to many types
of image renditions.

4. Corruption: Consisting of ImageNet-C dataset [12] in-
troduces various types of image corruptions, such as
noise, blur, and digital artifacts. These corruptions sim-
ulate the types of degradation that images may undergo
in real-world scenarios, such as poor lighting conditions,
low-quality cameras, or transmission errors.

By evaluating the models on these diverse datasets, we
aim to provide a comprehensive assessment of their perfor-
mance, robustness, and ability to handle a variety of real-
world scenarios.

2.2. VLMs under Interrogation

We evaluate 59 VLMs (see Table 2) on 4 benchmarks (Sec-
tion 2.1) across a range of model size, pre-training dataset
size, learning objective, and architectures (full list in Ta-
ble 2). For dataset size, we included models trained and/or
fine-tuned with datasets ranging from 13 million to 12.8 bil-
lion samples; which include DataComp [9] (small, medium,
large, and extra-large), LIAON [26] (400M, 2B, 5B), Meta-
CLIP [30] (400M and 2.5B), Flickr [31], PMD [27], and
COCO [20]. For model size and architecture, we catego-
rize models based on the number of parameters and either
convolutional or transformer based models, ranging from
ResNet50 [11] with 38 million parameters to EVA02 ViT E
[8] with 4.3 Billion parameters. Lastly, for learning objec-
tive, we included SigLIP [36], NegCLIP [33], BLIP [16],
among others.

2.3. Evaluation Procedure

We evaluate performance of zero-shot classification
datasets similar to [24], by contrasting the representations
of class labels (averaged across 80 prompts) with image
representation and using the class with the highest prob-
ability as the predicted class. Alternatively, we evaluated
performance of relation datasets by contrasting correct and
incorrect captions with image representation and using the
correct caption as the ground-truth label.



Figure 1. Relational understanding benchmarks. Examples with their respective expected correct vs incorrect captions.

Figure 2. Relational understanding does not improve with better ImageNet performance. Average zero-shot performance of all
models across all dataset benchmarks (Section 2.1). Grey-colored bars reflect ImageNet zero-shot performance, blue-colored bars reflect
performance across other benchmarks, red-colored bars reflect performance of NegCLIP. The x-axis outlines the names of the models, with
the size of the dataset they were pre-trained on, [ModelName] : [DatasetSize]. Grey-dashed line represent chance level.

3. Results

We show the overall performance of the nearly 60 VLMs we
examined in Figure 2 ranked by their zero-shot classifica-
tion performance on ImageNet. We find performance trends
for robustness and corruption improve with increasing Ima-
geNet accuracy, but relational understanding is mixed, sug-
gesting relational performance may not be correlated with
standard classification and robustness benchmarks. Next
we investigate the effect scaling training data, model size,
learning paradigm, and architecture to isolate the contribu-
tion of each to the facets of VLM performance.

3.1. Scaling training data does not improve rela-
tional understanding

In line with previous research [3, 24], we found that in-
creasing the size of the training data improves the zero-
shot classification and robustness of VLMs across various
benchmarks. Our findings, as illustrated in Figure 3, un-
cover that for relational understanding the trend does not
hold. The performance on Relation benchmarks does not in-
crease proportionally with the size of the training dataset. In
fact, most VLMs barely reach chance level on these bench-
marks, even when dataset sizes are scaled up to 12.8B sam-



Figure 3. Relational understanding requires more than scal-
ing dataset and model size. Average zero-shot performance of
models across Relation benchmarks. We investigate the impact
of dataset size (left), and model size on relational understanding
(right).

ples (Figure 6). NegCLIP is a notable exception show in
red in Figure 2 (see Appendix A.5). We run an additional
control in Figure 5 to isolate the effect of training data size
keeping other factors such as architecture and learning ob-
jective fixed. We observe similar trends with respect to scal-
ing. Next we examine the trends when the model size rather
than data is scaled.

3.2. Scaling VLM size does not improve relational
understanding

To examine scaling with respect to model size, we plot in
the right panel of Figure 3 performance across all four axes
as a function of model sizes ranging from 32M to 4.3B.
We find, while scaling model size improves ImageNet, ro-
bustness, and corruptions, it has little effect on relational
understanding. We find even large models such aas EVA02
E14 with 4.3B parameters are at near chance level for many
relational benchmarks. We perform an additional control
to confirm this trend by fixing the learning paradigm and
training data size in Figure 7. We examine architecture sep-
arately in Appendix A.4. Analogous to scaling data size,
while scaling boosts ImageNet performance by 39.3% re-
lational understanding remains flat suggesting it’s an open
challenge that scale alone does not address. These find-
ings underscores the importance of considering other fac-
tors, such as the choice of learning objectives and training
strategies, when aiming to improve VLMs’ performance on
relational understanding tasks

3.3. ViT encoders perform better on corruption
tasks

Next, we examine the role of architecture across the axes
of performance. As shown in Figure 2, all of the top 20
(out of the 59 models) for ImageNet, robustness and cor-
ruption are ViT-based. To isolate other confounding factors,
we compare the choice of encoder architecture while con-

trolling for the model size, learning paradigm, and training
data size in Figure 9. We find the choice of encoder archi-
tecture, whether ViT or convolutional, has little effect on
performance across standard ImageNet, relational, and ro-
bustness. However, we find ViT models perform much bet-
ter on corrupted images consistent with prior findings for
vision-only supervised models in Bai et al. [1]. For exam-
ple, transformer-based VLM performs 5.31 − 9.13% bet-
ter on Corruption benchmarks relative to comparably sized
convolutional-encoder models.

3.4. Rethinking learning objectives might be the
solution for relation understanding

While scaling model and training data sizes improves stan-
dard classification and robustness benchmarks, relational
understanding does not improve with scale. Can better
learning objectives help?

We show in Figure 2 the highlighted NegCLIP model
with a tailored learning objective for capturing relations via
hard-negatives seems to perform remarkably better on re-
lational understanding. NegCLIP, with only 86M parame-
ters, significantly outperforms models up to 50× larger with
an overall performance of 70.4% compared to only 50.5%
for the largest EVA ViT-E/14 model with 4.3B parameters.
We note NegCLIP is finetuned with 330k labeled relations,
which suggests carefully curated data may also be a helpful
lever. We further breakdown the performance of relational
understanding benchmarks in Figure 4. We find in addition
to NegCLIP, BLIP models emerge with better performance
on attribute-based relational understanding (see highlighted
bars in Figure 4). Similar to NegCLIP, BLIP models in-
corporate a richer learning objective that includes image-to-
text matching and image-conditioned language modeling in
addition to the standard contrastive objective. This prelim-
inary finding suggests rather than scale, the right learning
objective can be a promising strategy for improving rela-
tional understanding.

4. Discussion
Limitations Our analysis relies on the faithfulness and
consistency of existing benchmarks. In particular, rela-
tional benchmarks vary in difficulty [5] as well as their con-
struction. For example, Winoground is more challenging
as it contains a balanced number of counterfactual samples
whereas others do not [21]. We provide a breakdown of
relational understanding by benchmark in Appendix A.

By providing a comprehensive apples-to-apples
overview of performance across nearly 60 VLMs, we sur-
faced an important trend for the research community: while
scale is a promising lever for several axes of performance,
targeted learning objectives for relational understanding
along with a better understanding of data quality are needed
to advance VLM’s relational understanding capabilities.
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A. Appendix

In this section, we further detail our experimental setup and
provide more results. Appendix A.1 gives an overview to
the Relation benchmarks and we detail our control factors
in Appendices A.2 to A.5. Finally, we list the models we
used in our experiments in Appendix A.6.

A.1. Overview Relation Benchmarks

Figure 4 shows zero-shot models performance all Relation
benchmarks (Section 2.1). Figure 4 provides a detailed
comparison of the performance of various VLMs, partic-
ularly highlighting the effectiveness of the NegCLIP and
BLIP models across different relational benchmarks. This
figure illustrates how the NegCLIP model, with its learn-
ing objective that incoporates hard negatives, excels in re-
lational understanding compared to other models. Inter-
estingly, BLIP outperforms NegCLIP and other models on
VG Attribution, Winoground, and Sugarcrepe benchmarks,
while falling short on Flickr30K order, COCO order, and
VG Relation benchmarks. This demonstrate that BLIP’s
objective which adds image-to-text matching and image-
conditioned language modeling allows models to perform
better on attribution-based tasks. Through Figure 4, we
gain a comprehensive view of how different models stack
up against each other in the realm of relational understand-
ing, highlighting the necessity of richer learning objectives
and training strategies for relational understanding tasks.

A.2. Training Data Size

Figures 5 and 6 provides a focused examination of how the
scaling of training dataset sizes influences the performance
of VLMs on various benchmarks. Figure 5 shows that in-
creasing dataset size beyond 2 billion samples reaches a
demonishing return on ImageNet, Robustness, and Corrup-
tion benchmarks. For instance, increasing dataset size from
400 million to 2 billion samples, improves performance by
6.36%. Alternatively, increasing dataset size from 2 billion
to 12.8 billion samples, improves performance by 1.57%.

Figure 6 also shows that contrary to the positive impact
of increased dataset size on benchmarks like ImageNet, Ro-
bustness, and Corruption, the figure illustrates a starkly dif-
ferent scenario for relational tasks. It highlights that, de-
spite the substantial escalation of training data up to 12.8
billion samples, most VLMs do not exhibit significant im-
provement in relational understanding, often performing
near or at chance levels. This suggests a plateau in per-
formance gains from dataset scaling in the context of rela-
tional benchmarks. This divergence underscores the limited
effectiveness of mere data scaling in relational contexts and
hints at the necessity for targeted learning strategies to over-
come the inherent challenges in relational understanding for
VLMs.

A.2.1 Figure Controls

In Figures 5 and 6, we isolate the effect of training data
size by controlling for other factors. To do so, we use
the same ViT-B/32 architecture trained with the same con-
trastive CLIP objective over different number of training
samples. These include models trained with DataComp
(small, medium, large, and extra-large), LIAON (400 mil-
lions and 2 billions), and MetaCLIP (400 millions and 2.5
billions).

A.3. Model Size

Figures 7 and 8 provide a detailed examination of the impact
of model size on the performance of VLMs across various
benchmarks. Figures 9 and 10 highlights that increasing
the model size does not correspond with better performance
on relational benchmarks, suggesting that relational under-
standing requires more than just larger models.

A.3.1 Figure Controls

We show a controlled analysis of performance as a func-
tion of model size keeping training data size and learning
paradigm fixed in Figure 9 and Figure 10. To do so, we use
either ViT or ResNet architectures trained with the same
contrastive CLIP objective and dataset (LIAON400M) with
different number of parameters. These include ResNet50,
ResNet101, ResNet50x64, ViTB32, and ViTL14.

A.4. Architecture

Figures 9 and 10 extends analysis of Appendix A.3 to com-
pare different encoder architectures, showing that while the
choice between ViT and convolutional architectures does
not significantly affect performance on standard ImageNet,
relational, and robustness benchmarks, transformer-based
models exhibit a notable advantage in handling corrupted
images.

A.4.1 Figure Control

We show a controlled analysis of performance as a func-
tion of model size and architecture keeping training data
size and learning paradigm fixed in Figure 9 and Fig-
ure 10. To do so, we use either ViT or ResNet architec-
tures trained with the same contrastive CLIP objective and
dataset (LIAON400M) with different number of parame-
ters. These include ResNet50, ResNet50x64, ViTB32, and
ViTL14.

A.5. Learning Objective

Figures 11 and 12 provide a comprehensive overview of
how different learning objectives influence the performance
of VLMs across a range of benchmarks. Figure 11 zeroes
in on the impact of various learning objectives on models’



Figure 4. Average zero-shot performance of all models across Relation benchmarks (Section 2.1). Orange-colored bars reflect performance
of BLIP, and red-colored bars reflect performance of NegCLIP. The x-axis outlines the names of the models, with the size of the dataset
they were pre-trained on, [ModelName] : [DatasetSize].

abilities to tackle relational benchmarks, illustrating that
specific objectives such as NegCLIP and BLIP can signif-
icantly improve performance on relational understanding.
On the other hand, Figure 12 broadens this analysis to other
benchmarks, showing how the adoption of different learn-
ing objectives can also lead to varied performance across a
spectrum of tasks, not just relational ones. For example, de-
spite SigLIP being trained on a substantial dataset of 10 bil-
lion samples and comparable number of parameters to other
methods such as pure contrastive and NegCLIP, it substan-
tially underperforms in specific areas, notably Corruption
and Relation benchmarks. This instance shows that even
with extensive training data and substantial model complex-
ity, the right learning objective is crucial. These figures
highlights the versatility and adaptability required in select-
ing and designing learning objectives, emphasizing that the
right choice can enhance a model’s proficiency in specific
tasks while potentially impacting its general performance
across others.

A.6. Evaluation Setup

We show in Table 2 the list of models with their correspond-
ing architecture, learning paradigm, model size, and train-
ing data size.



Figure 5. Average zero-shot performance of models scaled only in the number of samples across various benchmarks (Section 2.1). Grey-
colored bars reflect ImageNet zero-shot performance, blue-colored bars reflect performance across other benchmarks. Grey-dashed line
represent chance level.

Figure 6. Average zero-shot performance on Relation benchmarks (Section 2.1) of VLMs trained on varying dataset sizes. Grey-dashed
line represent chance level.



Figure 7. Average zero-shot performance of models scaled only in the number of parameters across various benchmarks (Section 2.1).
Grey-colored bars reflect ImageNet zero-shot performance, blue-colored bars reflect performance across other benchmarks. Grey-dashed
line represent chance level.

Figure 8. Average zero-shot performance on Relation benchmarks of VLMs trained on varying dataset sizes. Grey-dashed line represent
chance level.



Figure 9. Average zero-shot performance of models scaled only in the number of parameters across various benchmarks (Section 2.1).
Blue-colored bars reflect ViT models, and orange-colored bars reflect convolutional models. While varying model sizes and achitecture,
we control for other factors that could influence performance. For instance, we only used models that are trained similar datasets.

Figure 10. Average zero-shot performance on Relation datasets of VLMs trained on varying model sizes and architectures. Blue-colored
bars reflect ViT models, and orange-colored bars reflect convolutional models. While varying model sizes and achitecture, we control for
other factors that could influence performance. For instance, we only used models that are trained similar datasets.



Figure 11. Average zero-shot performance of models across all datasets in the dataset zoo. There are four categories of datasets: ImageNet,
Relation, Robustness, and Corruption. The following figure demonstrate that unlike ImageNet, Robustness, and Corruption datasets,
Relation datasets are not correlated in models’ performance. Models were ranked based on their ImageNet zero-shot performance in order
to compare trends across the other categories of benchmarks.

Figure 12. Average zero-shot performance of models across all datasets in the dataset zoo. There are four categories of datasets: ImageNet,
Relation, Robustness, and Corruption. The following figure demonstrate that unlike ImageNet, Robustness, and Corruption datasets,
Relation datasets are not correlated in models’ performance. Models were ranked based on their ImageNet zero-shot performance in order
to compare trends across the other categories of benchmarks.



Dataset size Model size Learning objective Architecture Model name

blip vitB16 14m [16] 14 86 BLIP vit BLIP ViT B 16
blip vitL16 129m [16] 129 307 BLIP vit BLIP ViT L 16
blip vitB16 129m [16] 129 86 BLIP vit BLIP ViT B 16
blip vitB16 coco [16] 129 86 BLIP vit BLIP ViT B 16
blip vitB16 flickr [16] 129 86 BLIP vit BLIP ViT B 16
blip vitL16 coco [16] 129 307 BLIP vit BLIP ViT L 16
blip vitL16 flickr [16] 129 307 BLIP vit BLIP ViT L 16
eva02 vitE14 plus 2b [8] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02 vitE14 2b [8] 2000 4350 Pure Contrastive vit EVA02 ViT E 14
eva02 vitL14 2b [8] 2000 307 Pure Contrastive vit EVA02 ViT L 14
eva02 vitB16 2b [8] 2000 86 Pure Contrastive vit EVA02 ViT B 16
eva01 vitG14 plus 2b [7] 2000 1011 Pure Contrastive vit EVA01 ViT g 14
eva01 vitG14 400m [7] 400 1011 Pure Contrastive vit EVA01 ViT g 14
clipa vitbigG14 [19] 1280 1843 Pure Contrastive vit CLIPA ViT G 14
clipa vitH14 [19] 1280 633 Pure Contrastive vit CLIPA ViT H 14
clipa vitL14 [19] 1280 307 Pure Contrastive vit CLIPA ViT L 14
siglip vitL16 [36] 10000 307 Contrastive (sigmoid) vit SigLIP ViT L 16
siglip vitB16 [36] 10000 86 Contrastive (sigmoid) vit SigLIP ViT B 16
openclip vitB32 metaclip fullcc [30] 2500 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip vitB16 metaclip 400m [30] 400 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip vitB32 metaclip 400m [30] 400 86 Pure Contrastive vit MetaCLIP ViT B 32
openclip vitB16 metaclip fullcc [30] 2500 86 Pure Contrastive vit MetaCLIP ViT B 16
openclip vitL14 dfn2b [6] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip vitL14 metaclip 400 [30] 400 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip vitL14 metaclip fullcc [30] 2500 307 Pure Contrastive vit MetaCLIP ViT L 14
openclip vitH14 metaclip fullcc [30] 2500 633 Pure Contrastive vit MetaCLIP ViT H 14
openclip vitH14 dfn5b [6] 5000 633 Pure Contrastive vit OpenCLIP ViT H 14
openclip convnext base [15] 400 88 Pure Contrastive conv OpenCLIP ConvNext
openclip vitB32 datacomp s [9] 13 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB32 datacomp m [9] 128 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB32 datacomp xl [9] 12800 86 Pure Contrastive vit DataComp ViT B 32
openclip vitB16 datacomp xl [9] 12800 86 Pure Contrastive vit DataComp ViT B 16
openclip vitB16 datacomp l [9] 1280 86 Pure Contrastive vit DataComp ViT B 16
openclip vitH14 [15] 2000 633 Pure Contrastive vit OpenCLIP ViT H 14
xvlm flickr [35] 16 86 XVLM Swin XVLM Swin B
flava full [27] 70 86 Other vit FLAVA ViT B 32
openclip vitL14 400m [15] 400 307 Pure Contrastive vit OpenCLIP ViT L 14
openclip vitL14 datacomp xl [9] 12800 307 Pure Contrastive vit DataComp ViT L 14
openclip vitL14 2b [15] 2000 307 Pure Contrastive vit OpenCLIP ViT L 14
clip vitL14 [24] 400 307 Pure Contrastive vit CLIP ViT L 14
xvlm coco [35] 16 86 XVLM Swin XVLM Swin B
openclip vitB32 400m [15] 400 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip vitB32 2b [15] 2000 86 Pure Contrastive vit OpenCLIP ViT B 32
openclip vitG14 2b [15] 2000 1011 Pure Contrastive vit OpenCLIP ViT g 14
openclip vitbigG14 2b [15] 2000 1843 Pure Contrastive vit OpenCLIP ViT G 14
openclip vitB16 2b [15] 2000 86 Pure Contrastive vit OpenCLIP ViT B 16
openclip vitB16 400m [15] 400 86 Pure Contrastive vit OpenCLIP ViT B 16
opencoca vitL14 2b [15, 32] 2000 307 Other vit OpenCOCA ViT L 14
opencoca vitB32 2b [15, 32] 2000 86 Other vit OpenCOCA ViT B 32
negclip vitB32 [33] 400 86 Negative CLIP vit NegCLIP ViT B 32
clip vitB16 [24] 400 86 Pure Contrastive vit CLIP ViT B 16
clip resnet50 [24] 400 38 Pure Contrastive conv CLIP ResNet50
openclip resnet101 yfcc [15] 15 56 Pure Contrastive conv OpenCLIP ResNet101
openclip resnet50 yfcc [15] 15 38 Pure Contrastive conv OpenCLIP ResNet50
openclip resnet50 cc [15] 12 38 Pure Contrastive conv OpenCLIP ResNet50
clip resnet101 [24] 400 56 Pure Contrastive conv CLIP ResNet101
clip resnet50x4 [24] 400 87 Pure Contrastive conv CLIP ResNet50x4
clip resnet50x16 [24] 400 167 Pure Contrastive conv CLIP ResNet50x16
clip resnet50x64 [24] 400 420 Pure Contrastive conv CLIP ResNet50x64
clip vitB32 [24] 400 86 Pure Contrastive vit CLIP ViT B 32

Table 2. List of all the models used in evaluations with their corresponding dataset size, model size (number of parameters), learning
objective, and architecture.
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