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Abstract

Multimodal contrastive learning has emerged as a pow-
erful paradigm for building high-quality features using the
complementary strengths of various data modalities. How-
ever, the open nature of such systems inadvertently in-
creases the possibility of backdoor attacks. These attacks
subtly embed malicious behaviors within the model during
training, which can be activated by specific triggers in the
inference phase, posing significant security risks. Despite
existing countermeasures through fine-tuning that reduce
the adverse impacts of such attacks, these defenses often
degrade the clean accuracy and necessitate the construc-
tion of extensive clean training pairs. In this paper, we
explore the possibility of a less-cost defense from the per-
spective of model unlearning, that is, whether the model
can be made to quickly unlearn backdoor threats (UBT)
by constructing a small set of poisoned samples. Specifi-
cally, we strengthen the backdoor shortcuts to discover sus-
picious samples through overfitting training prioritized by
weak similarity samples. Building on the initial identifi-
cation of suspicious samples, we introduce an innovative
token-based localized forgetting training regime. This tech-
nique specifically targets the poisoned aspects of the model,
applying a focused effort to unlearn the backdoor associa-
tions and trying not to damage the integrity of the overall
model. Experimental results show that our method not only
ensures a minimal success rate for attacks, but also pre-
serves the model’s high clean accuracy.

1. Introduction

Multimodal contrastive learning (MCL), exemplified by the
CLIP model [11], enhances the models by learning from
various data types, such as images and text, facilitating im-
proved representation of features and understanding of dif-
ferences. However, MCL’s reliance on vast datasets (e.g.,
400 million image-text pairs) exposes it to vulnerabilities,

such as backdoor attacks [3] where altering a small frac-
tion of the data (e.g. 1500 pairs) can significantly im-
pact the model’s predictions. To counter these attacks, de-
fense strategies are classified into detection and mitigation.
Detection methods evaluate encoder discrepancies to iden-
tify tampering, while mitigation involves refining the model
with a clean subset of data to nullify the backdoor’s effects.
However, these approaches require substantial clean data
that potentially compromise model accuracy.

Our research investigates the use of select poisoned sam-
ples to neutralize backdoors through machine learning, with
third-party oversight. To counteract attackers who may taint
pretrained models with malicious data, defenders fine-tune
these models to purge backdoor influences, balancing un-
learning with retention of model accuracy. We employ
feature-sensitive techniques to segregate suspicious from
clean samples and introduce a cost-effective local unlearn-
ing method complemented by sample augmentation. This
method, guided by contrastive learning, eliminates the ma-
licious influence of specific backdoor data. Moreover, we
propose a token-level unlearning strategy that efficiently de-
couples poisoned and clean features, streamlining the un-
learning process.

In summary, the main contributions of this study are
fourfold: (1) an innovative defense scenario is proposed for
backdoor attacks in multimodal contrastive learning. (2) A
new idea based on local unleraning is proposed, which fo-
cuses on severing the association between malicious sam-
ples and model behaviors; (3) Experiments validate the ef-
fectiveness of using a small number of samples to fine-tune
purification of the poisoned model; and (4) The defense
strategy successfully maintains a low Attack Success Rate
(ASR) and high clean accuracy (CA).

2. Related Work
2.1. Backdoor Attacks and Defense against MCL

In MCL frameworks, attackers orchestrate backdoor attacks
by embedding imperceptible triggers in image-text pairs,



altering text labels to poison targets, as seen in methods
such as BadNet [7] with unnoticeable triggers, Blended [5]
which blends the trigger pattern with the original image, and
advanced techniques such as SIG [2] and SSBA [8]. These
attacks trick the model into classifying trigger-containing
images as the intended target of the attacker. To combat
these, researchers have developed detection and mitigation
strategies. Feng et al. [6] proposed an encoder-based ap-
proach to identify and reverse trigger effects in poisoned
models. Meanwhile, CleanCLIP [1] offers a backdoor fine-
tuning strategy that uses clean data sets to disrupt backdoor
pathways, albeit at the potential cost of reduced classifica-
tion accuracy.

2.2. Machine Unlearning

Machine unlearning, aimed at removing specific samples
from a model’s memory without full retraining, is crucial
for large models to conserve time and resources [10]. Yao
et al. [13] demonstrate this by applying gradient ascent to
efficiently forget the sample in LLM. In the context of back-
door attacks, Li et al. [9] explore the unlearning to counter-
act backdoors by adjusting model parameters via gradient
ascent, highlighting its significance in improving model se-
curity. However, adapting these techniques to MCL models
remains challenging, with Bansal et al. [1] seeking new sta-
tistical features for effective data screening, but facing clean
accuracy limitations.

3. Method

Fig. 1 shows the framework for unlearning backdoor threats
(UBT). We enhance the backdoor shortcuts through poi-
soned samples and implement the token-level local unlearn-
ing to purify the backdoor model on the few-shot suspicious
samples.

3.1. Problem Formulation

Defense Scenarios The defender operates a secure train-
ing platform to protect users from attacks, especially back-
door threats. Despite security measures, attackers might ex-
ploit the platform, inserting backdoors into training data and
training poisoned models on them.
Defense Capabilities The defender has the right to inspect
and audit the training data and models submitted for secu-
rity checks.
Defense Objectives The goal of the defender is to pro-
tect against backdoor attacks in models. SoTA defenses
like CleanCLIP fine-tunes poisoned models with extensive
image-text pairs, which can be inefficient and impact ac-
curacy. Our proposed strategy employs a targeted unlearn-
ing method, leveraging suspect datasets to selectively erase
backdoor data, preserving model performance on clean
data.

3.2. Poisoned Sample Overfitting

Faced with the challenge of “weak” backdoor shortcuts
created by attackers, our defense strategy aims to further
strengthen these shortcuts to better discover suspicious sam-
ples. To this end, we combine dataset analysis with a dif-
ferentiated training approach, focusing on the segmentation
of the poisoned dataset and strengthening the model’s re-
sponse to backdoor triggers through a specific training pro-
cess.

We begin by dividing the dataset using a clean pre-
trained model into suspicious Dsusp and clean Dsafe sample
sets based on multimodal text similarity. In the reinforce-
ment phase, we increase the suspicious set’s cosine simi-
larity, the model becomes more sensitive to backdoors, en-
suring accurate trigger detection. Clean set Dsafe serves as a
regularization for balance training, using InfoCE loss to pre-
vent overfitting to clean samples, thus prioritizing the fitting
of backdoor features. We conducted overfitting training on
the poisoned model which can be formulated as follows:

θoverfitting = min
θ

{ 1

|Dsusp|

|Dsusp|∑
i=1

[
S(Isusp

i , T susp
i )− 1

]2
+LCLIP(Dsafe)

} (1)

where S(I, T ) denotes the cosine similarity of the image-
text pair (I, T ), Sbd denote the similarity calculated using
the backdoor model. and LCLIP denotes the multimodal con-
trastive loss.

At this point, Dsusp and Dsafe represent the suspicious
sample set and the clean dataset, respectively. With this
staged and targeted training approach, we amplify the poi-
soning properties of the model, which helps pinpoint those
samples that have the greatest impact on the model’s se-
curity, comprising the oblivious subset used for backdoor
defense.

3.3. Suspicious Sample Detection

We reanalyze the suspicious sample set using the overfitting
poisoned(OP) model after enhancing the shortcuts and fur-
ther perform a finer-grained backdoor analysis on the sam-
ple set. The goal of this process is to discover and localize
the subsets of samples that have the greatest impact on back-
door oblivion, so that these backdoor features can be weak-
ened or eliminated more effectively in subsequent process-
ing, thereby improving the overall security and robustness
of the model.

Specifically, we first compute, for each sample in the
suspect sample set, its embedding features, which are gen-
erated by the poisoning model reinforcing the backdoor
features, reflecting the multidimensional spatial location of
the sample represented inside the poisoning model. Subse-
quently, we reorder the similarity scores of these embedded



+

Pre-trained
CLIP

"Fresh 
bananas on 
a basket."

"Close-up 
of ripe 
bananas."

Poisoned Dataset

... Suspicious Dataset

Clean Dataset

Overfitting
Poisoned CLIP

Poisoned 
CLIP

 Repaired
CLIP

Bananas offer a portable 
snack in their natural 
yellow jacket.

Bananas' creamy 
sweetness is perfect for 
smoothies and desserts.

...

a) Poisoned Sample Overfitting  b) Suspicious Sample Detection c) Token-level Local Unlearn

people 
walking in the 
central streets

divers search an 
area Thursday

the banana 
in a video 
game.

big trees on the 
park

Figure 1. The overall framework of UBT backdoor defense method.

features and highly focus on the backdoor samples with the
highest similarity scores. This can be represented as fol-
lows:

Dtopk = {(Ii, Ti) ∈ Dsusp | rank(SOP(Ii, Ti)) ≤ k} , (2)

where rank() denotes the similarity ranking of the image-
text pair (I, T ) in the set calculated by using the OP model
, the higher the similarity, the smaller the rank value is.

Top-k ranked samples are more likely to carry backdoor
triggers because they exhibit the highest activation scores
compared to the other samples. This phenomenon suggests
that when the model encounters these specific samples, the
probability of the backdoor logic being activated is signif-
icantly higher, thus triggering a specific, predetermined re-
sponse at the output layer of the model. By identifying
these high similarity few-shot suspicious samples, we can
not only focus on this small group of samples to effectively
mitigate or eliminate the potential threat posed by backdoor
attacks, but also reduce the overall cost of oblivious train-
ing.

3.4. Token-level Local Unlearn

To enhance our model’s resilience against backdoor attacks,
we introduce a targeted forgetting strategy that mitigates
the attacks’ impact without compromising model accuracy.
This strategy focuses on selective, not wholesale, forgetting
and preserving model knowledge while addressing the min-
imal, yet crucial modifications introduced by backdoors.
Given the complexity of identifying specific regions for
forgetting, especially with sophisticated attacks that seam-
lessly blend triggers, we opt for discrete text token forget-
ting. This approach, informed by the observation that back-
doors less frequently distort text semantics, involves evalu-
ating each token’s contribution to backdoor effects, as out-
lined by [4], and selectively forgetting less impactful ones.

To further boost this process’s efficiency, we employ
data augmentation through Cartesian product combinations,
enriching training data diversity. This method, known as
token-based local forgetting, strategically strengthens the

model against backdoor vulnerabilities.

θunlearn = min
θ

(
1

|Dunlearn|

|Dunlearn|∑
i=1

S(Ii, Ti)) (3)

where Dunlearn, extended from Dtopk based on key insights,
enhances the model’s ability to forget backdoor samples ef-
ficiently, maintaining recognition of normal samples with
minimized backdoor impact.

4. Experiments
Experimental Setting A 500K subset of the CC3M
dataset [12] and the CLIP model are used for backdoor at-
tack experiments using ViT/32-B and Transformer as visual
and text encoders. The experiment adds 1500 backdoor
samples to this subset and employs four backdoor attack
methods: BadNet, Blended, SIG, and SSBA. The model is
poisoned and trained with a batch size of 128 and a learning
rate of 1e-6 for 3 iterations. For backdoor defense, UBT
first trains an overfitting poisoning model with a batch size
of 64 and a learning rate of 1e-6 for 5 rounds of training,
making it difficult to generalize to clean data. Then, UBT
uses a forgetting technique to adjust the batch size to 64, the
learning rate to 1e-5, and performs 3 rounds of training to
eliminate backdoor feature memories from the model, en-
hancing security and robustness. The advanced CleanCLIP
defense is used as a comparison method, and the specific
experimental setup is described in [1].
Backdoor Defense Results Analyzing Tab. 1, we draw the
following conclusions: 1) The UBT defense strategy, espe-
cially the version with token-level technology, shows signif-
icant defense efficacy in all kinds of backdoor attack scenar-
ios and is capable of effectively reducing the Attack Success
Rate (ASR) to close to or completely zero, demonstrating its
strong ability to defend against backdoor attacks. 2) When
comparing the effectiveness of no defense, CleanCLIP de-
fense, and different configurations of UBT (including the
version without and with token level), it is clearly seen that
the version of UBT using token level provides better pro-
tection in almost all cases, reduces the model’s sensitivity



Table 1. Backdoor defense results against different attacks.

Attack Method CA ASR

Pretrained CLIP 62.69 -

BadNet

No defense 62.61 80.92
CleanCLIP 58.95 14.6
UBT w/o token-level 61.29 0.01
UBT 61.51 0.00

Blended

No defense 62.58 97.99
CleanCLIP 59.43 2.24
UBT w/o token-level 60.81 0.156
UBT 60.56 0.08

SIG

No defense 62.77 90.90
CleanCLIP 59.44 48.48
UBT w/o token-level 62.72 0.25
UBT 62.70 0.27

SSBA

No defense 62.77 66.22
CleanCLIP 58.90 15.53
UBT w/o token-level 62.20 4.332
UBT 62.144 2.814

Figure 2. Sample distribution statistics under different defense
methods.

to backdoor features, and enhances the model’s security and
robustness. 3) Additionally, even in scenarios with high at-
tack success rates, such as combined attacks (97. 99% ASR)
and SIG attacks (90.90% ASR), the UBT method still sig-
nificantly reduces the effectiveness of attacks, proving its
effectiveness as a backdoor defense.
Sample Separation Visualization Based on Fig. 2, we can
draw two conclusions: 1) The UBT method significantly
outperforms the ABL method in distinguishing backdoor
images from clean images, as demonstrated by the clearly
separated distributions at the bottom of the UBT graph. 2)
This result indicates that UBT provides a more reliable de-
fense mechanism because it can effectively reduce the over-
lap in similarity between clean images and backdoor im-
ages, thus improving the accuracy of security protection.

5. Conclusion
This study proposes a defense strategy for backdoor at-
tacks in multimodal contrastive learning, which effectively
destroys backdoor shortcuts in poisoning models through

few-shot poisoned pairs and token-level local unlearning.
We experimentally verify its effectiveness in reducing the
success rate of the attack and maintaining the accuracy of
model purification, providing a new defense idea for MCL’s
security.
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